已知回歸直線的斜率的估計值是2.2,樣本點的中心為(4,6.2),則回歸直線的方程是( 。
分析:本題考查線性回歸直線方程,可根據(jù)回歸直線方程一定經(jīng)過樣本中心點這一信息,選擇驗證法或排除法解決,具體方法就是將點(4,5)的坐標(biāo)分別代入各個選項,滿足的即為所求.
解答:解:法一:由回歸直線的斜率的估計值為2.2,可排除C,D
由線性回歸直線方程樣本點的中心為(4,6.2),
將x=4分別代入A、B
其值依次為12.8、6.2,排除A
法二:因為回歸直線方程一定過樣本中心點,
將樣本點的中心(4,6.2),
?
a
=
.
y
-2.2×
.
x
=6.2-8.8=-2.6
?
y
=2.2x-2.6

故選B
點評:本題提供的兩種方法,其實原理都是一樣的,都是運用了樣本中心點的坐標(biāo)滿足回歸直線方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則回歸直線方程為(  )
A、
?
y
=1.23x+4
B、
?
y
=1.23x+5
C、
?
y
=1.23x+0.08
D、
?
y
=0.08x+1.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知回歸直線的斜率的估計值是1.23,樣本中心點為(4,5),若解釋變量的值為10,則預(yù)報變量的值約為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島二模)已知回歸直線的斜率的估計值為1.23,樣本的中心點為(5,4),則回歸直線方程是
y
=1.23x-2.15
y
=1.23x-2.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•惠州模擬)已知回歸直線的斜率的估計值是1.23,樣本點的中心為(4,5),則回歸直線的方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列五個命題中正確命題的個數(shù)是(  )
(1)對于命題P:?x∈R,使得x2+x+1<0,則¬P:?x∈R,均有x2+x+1>0;
(2)m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件;
(3)已知回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則回歸直線方程為
y
=1.23x+0.08;
(4)若實數(shù)x,y∈[-1,1],則滿足x2+y2≥1的概率為
π
4

(5)曲線y=x2與y=x所圍成圖形的面積是S=∫
 
1
0
(x-x2)dx.

查看答案和解析>>

同步練習(xí)冊答案