【題目】已知四棱錐中,平面,,是線段的中點。

1)求證:平面

2)試在線段上確定一點,使得平面,并加以證明。

【答案】(1)見解析(2)存在線段上的中點,使平面,詳見解析

【解析】

1)利用條件判斷CMPA、AB垂直,由直線與平面垂直的判定定理可證.

2)取PB的中點Q,PA的中點F,判斷四邊形CQFD為平行四邊形,利用直線與平面平行的判定定理可證;或取PB中點Q,證明平面CQM與平面DAP平行,再利用兩平面平行的性質(zhì)可證.

解:(1)∵,∴是等邊三角形,

,

又∵平面,平面,

,

又∵,

平面;

2)取線段的中點,線段的中點,連結,

是線段的中點,,

,∴是平行四邊形,

又∵平面,平面

平面

即存在線段上的中點,使平面.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下表中的數(shù)據(jù)是一次階段性考試某班的數(shù)學、物理原始成績:

用這44人的兩科成績制作如下散點圖:

學號為22號的同學由于嚴重感冒導致物理考試發(fā)揮失常,學號為31號的同學因故未能參加物理學科的考試,為了使分析結果更客觀準確,老師將兩同學的成績(對應于圖中兩點)剔除后,用剩下的42個同學的數(shù)據(jù)作分析,計算得到下列統(tǒng)計指標:

數(shù)學學科平均分為110.5,標準差為18.36,物理學科的平均分為74,標準差為11.18,數(shù)學成績

與物理成績的相關系數(shù)為,回歸直線(如圖所示)的方程為.

(1)若不剔除兩同學的數(shù)據(jù),用全部44人的成績作回歸分析,設數(shù)學成績與物理成績的相關系數(shù)為,回歸直線為,試分析的大小關系,并在圖中畫出回歸直線的大致位置;

(2)如果同學參加了這次物理考試,估計同學的物理分數(shù)(精確到個位);

(3)就這次考試而言,學號為16號的同學數(shù)學與物理哪個學科成績要好一些?(通常為了比較某個學生不同學科的成績水平,可按公式統(tǒng)一化成標準分再進行比較,其中為學科原始分,為學科平均分,為學科標準差)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于數(shù)集X={﹣1,x1 , x2 , …,xn},其中0<x1<x2<…<xn , n≥2,定義向量集Y={ =(s,t),s∈X,t∈X},若對任意 ,存在 ,使得 ,則稱X具有性質(zhì)P.例如{﹣1,1,2}具有性質(zhì)P.
(1)若x>2,且{﹣1,1,2,x}具有性質(zhì)P,求x的值;
(2)若X具有性質(zhì)P,求證:1∈X,且當xn>1時,x1=1;
(3)若X具有性質(zhì)P,且x1=1、x2=q(q為常數(shù)),求有窮數(shù)列x1 , x2 , …,xn的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)若存在實數(shù)x使|x﹣a|+|x﹣1|≤3成立,則實數(shù)a的取值范圍是
B.(幾何證明選做題)如圖,在圓O中,直徑AB與弦CD垂直,垂足為E,EF⊥DB,垂足為F,若AB=6,AE=1,則DFDB=

C.(坐標系與參數(shù)方程)直線2ρcosθ=1與圓ρ=2cosθ相交的弦長為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知球為正四面體的外接球,,過點作球的截面,則截面面積的取值范圍為____________________。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)fn(x)=xn+bx+c(n∈N+ , b,c∈R)
(1)設n≥2,b=1,c=﹣1,證明:fn(x)在區(qū)間 內(nèi)存在唯一的零點;
(2)設n=2,若對任意x1 , x2∈[﹣1,1],有|f2(x1)﹣f2(x2)|≤4,求b的取值范圍;
(3)在(1)的條件下,設xn是fn(x)在 內(nèi)的零點,判斷數(shù)列x2 , x3 , …,xn 的增減性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形內(nèi)的圖形來自中國古代的太極圖.正方形內(nèi)切圓中的黑色部分和白色部分位于正方形的中心成中心對稱,在正方形內(nèi)隨機取一點,則此點取自黑色部分的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角AB,C所對的邊分別為a,b,c,設S為△ABC的面積,滿足Sa2+c2b2).

1)求角B的大小;

2)若邊b,求a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對方再連續(xù)發(fā)球2次,依次輪換.每次發(fā)球,勝方得1分,負方得0分.設在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負結果相互獨立.甲、乙的一局比賽中,甲先發(fā)球.
(1)求開始第4次發(fā)球時,甲、乙的比分為1比2的概率;
(2)ξ表示開始第4次發(fā)球時乙的得分,求ξ的期望.

查看答案和解析>>

同步練習冊答案