分析 (1)由題意a=1,f(x)在x=1處的切線過點(2,6),利用導(dǎo)數(shù)函數(shù)的幾何性質(zhì)求解b的值;
(2)b=a2+2,求函數(shù)f(x),求其導(dǎo)函數(shù),討論在區(qū)間[1,4]上的最大值;
(3)根據(jù)函數(shù)g(x)的不動點新定義,求其f(x)定義域,當(dāng)a>0時,g(x0)=x0討論函數(shù)f(x)有兩個不同的不動點;同時求函數(shù)f(x)的極值點,即可知道兩個不動點能否同時也是函數(shù)f(x)的極值點.
解答 解:(1)對f(x)進(jìn)行求導(dǎo):f'(x)=$\frac{a}{x}$+2ax+b
當(dāng)a=1時,f(x)=lnx+x2+bx,f'(x)=$\frac{1}{x}$+2x+b
當(dāng)x=1時,f(1)=1+b,f'(1)=3+b
故切線方程為:y-(1+b)=(3+b)(x-1)
點(2,6)滿足切線方程,故b=1.
(2)由題意,f(x)=alnx+ax2+(a2+2)x,x>0
則:f'(x)=$\frac{a}{x}$+2ax+a2+2=$\frac{(ax+1)(2x+a)}{x}$
當(dāng)a=0時,f(x)=2x,f'(x)=2>0,f(x)在[1,4]上為增函數(shù),故最大值為f(4)=8;
當(dāng)a>0時,f'(x)>0,f(x)在x>0上為增函數(shù),故最大值為f(4)=4a2+(16+ln4)a+8;
當(dāng)a<0時,令f'(x)=0,則導(dǎo)函數(shù)有兩個零點:x1=-$\frac{1}{a}$,x2=-$\frac{a}{2}$.
(i)當(dāng)a<$-\sqrt{2}$時,∵${x}_{1}=-\frac{1}{a}<\frac{\sqrt{2}}{2}$,${x}_{2}=-\frac{a}{2}>\frac{\sqrt{2}}{2}$∴x1<x2,
f(x)在(0,-$\frac{1}{a}$),(-$\frac{a}{2}$,+∞)上單調(diào)遞減,在(-$\frac{1}{a}$,-$\frac{a}{2}$)上單調(diào)遞增;
①當(dāng)-$\frac{1}{a}$<$\frac{\sqrt{2}}{2}$<1<4≤-$\frac{a}{2}$時,即a≤-8,此時最大值為f(4)=4a2+(16+ln4)a+8;
②當(dāng)-$\frac{1}{a}$<$\frac{\sqrt{2}}{2}$<1<-$\frac{a}{2}$≤4時,即-8≤a<-2,此時最大值為f(-$\frac{a}{2}$)=aln(-$\frac{a}{2}$)-$\frac{1}{4}{a}^{3}$-a;
③當(dāng)$-\frac{1}{a}$<$\frac{\sqrt{2}}{2}$<$-\frac{a}{2}$≤1<4時,即-2≤a<-$\sqrt{2}$,此時最大值為f(1)=a2+a+2;
(ii)當(dāng)a=-$\sqrt{2}$時,${x}_{1}={x}_{2}=\frac{\sqrt{2}}{2}$,f'(x)≤0,f(x)在[1,4]上單調(diào)遞減,最大值為f(1)=4-$\sqrt{2}$;
(iii)當(dāng)-$\sqrt{2}$<a<0時,${x}_{1}=-\frac{1}{a}>\frac{\sqrt{2}}{2}$,${x}_{2}=-\frac{a}{2}<\frac{\sqrt{2}}{2}$∴x1>x2
f(x)在(0,-$\frac{a}{2}$),(-$\frac{1}{a}$,+∞)上單調(diào)遞減,(-$\frac{a}{2}$,-$\frac{1}{a}$)上單調(diào)遞增;
①當(dāng)$-\frac{a}{2}<\frac{\sqrt{2}}{2}<1<4≤-\frac{1}{a}$時,即$-\frac{1}{4}$≤a<0,最大值為f(4)=4a2+(16+ln4)a+8;
②當(dāng)-$\frac{a}{2}$<$\frac{\sqrt{2}}{2}$<1<-$\frac{1}{a}$≤4時,即-1<a≤$-\frac{1}{4}$,最大值為f(-$\frac{1}{a}$)=aln(-$\frac{1}{a}$)-a-$\frac{1}{a}$;
③當(dāng)-$\frac{a}{2}$<$\frac{\sqrt{2}}{2}$<-$\frac{1}{a}$≤1<4時,即-$\sqrt{2}$<a≤-1,最大值為f(1)=a2+a+2;
(3)由題意知:f(x)=$\left\{\begin{array}{l}{f(x)=x}\\{f'(x)=0}\end{array}\right.$⇒$\left\{\begin{array}{l}{alnx+a{x}^{2}+bx=x\\;①}\\{2a{x}^{2}+bx+a=0\\;②}\end{array}\right.$
由①②化簡后:alnx-a-ax2=x⇒則說明 a(lnx-x2-1)=x 有兩個根;
∵a>0,x>0∴$\frac{lnx-{x}^{2}-1}{x}$=$\frac{1}{a}$
即 y=$\frac{1}{a}$ 與 y=h(x)=$\frac{lnx-{x}^{2}-1}{x}$ 在(0,+∞)上有兩個不同交點.
h'(x)=$\frac{2-{x}^{2}-lnx}{{x}^{2}}$,令F(x)=2-x2-lnx⇒F'(x)=-2x-$\frac{1}{x}$<0;
∴F(x)在x>0上單調(diào)遞減;
∵F(1)>0,F(xiàn)($\frac{3}{2}$)<0∴F(x)的零點為x0∈(1,$\frac{3}{2}$),
故F(x0)=0,即2-${x}_{0}^{2}$-lnx0=0⇒lnx0=2-${x}_{0}^{2}$ ③;
所以,h(x)在(0,x0)單調(diào)遞減,(x0,+∞)上單調(diào)遞增;
h(x0)=$\frac{ln{x}_{0}-1-{x}_{0}^{2}}{{x}_{0}}$=$\frac{1-2{x}_{0}^{2}}{{x}_{0}}$=$\frac{1}{{x}_{0}}-2{x}_{0}$,h(x0)∈(-$\frac{7}{3}$,-1);
故h(x)的圖形如右圖:
當(dāng)$\frac{1}{a}$<0時即a<0,h(x)圖形與y=$\frac{1}{a}$圖形有兩個交點,與題設(shè)a>0
相互矛盾,故a不存在.
點評 本題考查了函數(shù)的導(dǎo)數(shù)的應(yīng)用,同時考查了函數(shù)在閉區(qū)間上最值,屬于中檔題
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>c>b | B. | c>a>b | C. | a>b>c | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>c>b | B. | a>b>c | C. | b>c>a | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com