解答:解:(I)f(x)=-x
2+8x=-(x-4)
2+16.
當(dāng)t+1<4,即t<3時,f(x)在[t,t+1]上單調(diào)遞增,
h(t)=f(t+1)=-(t+1)
2+8(t+1)=-t
2+6t+7;
當(dāng)t≤4≤t+1,即3≤t≤4時,h(t)=f(4)=16;
當(dāng)t>4時,f(x)在[t,t+1]上單調(diào)遞減,
h(t)=f(t)=-t
2+8t.
綜上,
h(t)= | -t2+6t+7,t<3 | 16,3≤t≤4 | -t2+8t,t>4 |
| |
(II)函數(shù)y=f(x)的圖象與y=g(x)的圖象有且只有三個不同的交點,
即函數(shù)m(x)=g(x)-f(x)的圖象與x軸的正半軸有且只有三個不同的交點.
∵m(x)=x
2-8x+6lnx+m,
∴
?′(x)=2x-8+==(x>0),
當(dāng)x∈(0,1)時,m'(x)>0,m(x)是增函數(shù);
當(dāng)x∈(1,3)時,m'(x)<0,m(x)是減函數(shù);
當(dāng)x∈(3,+∞)時,m'(x)>0,m(x)是增函數(shù);
當(dāng)x=1,或x=3時,m'(x)=0.
∴m(x)
最大值=m(1)=m-7,m(x)
最小值=m(3)=m+6ln3-15.
∵當(dāng)x充分接近0時,m(x)<0,當(dāng)x充分大時,m(x)>0.
∴要使m(x)的圖象與x軸正半軸有三個不同的交點,必須且只須
| ?(x)最大值=m-7>0 | ?(x)最小值=m+6ln3-15<0 |
| |
即7<m<15-6ln3.
∴存在實數(shù)m,使得函數(shù)y=f(x)與y=g(x)的圖象有且只有三個不同的交點,m的取值范圍為(7,15-6ln3).