已知A、B、C三個箱子中各裝有2個完全相同的球,每個箱子里的球,有一個球標著號碼1,另一個球標著號碼2.現從A、B、C三個箱子中各摸出1個球.
(I)若用數組(x,y,z)中的x、y、z分別表示從A、B、C三個箱子中摸出的球的號碼,請寫出數組(x,y,z)的所有情形,并回答一共有多少種;
(Ⅱ)如果請您猜測摸出的這三個球的號碼之和,猜中有獎.那么猜什么數獲獎的可能性最大?請說明理由.
解:(Ⅰ)數組的所有情形為:(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2),共8種.
答:一共有8種. 5分
注:列出5、6、7種情形,得2分;列出所有情形,得4分;寫出所有情形共8種,得1分.
(Ⅱ)記“所摸出的三個球號碼之和為”為事件(=3,4,5,6), ……6分
易知,事件包含有1個基本事件,事件包含有3個基本事件,事件包含有3個基本事件,事件包含有1個基本事件,所以,
,,,. …………………10分
故所摸出的兩球號碼之和為4、為5的概率相等且最大.
答:猜4或5獲獎的可能性最大. …………………12分
科目:高中數學 來源:2013-2014學年浙江考試院抽學校高三11月抽測測試理科數學試卷(解析版) 題型:選擇題
已知箱中共有6個球,其中紅球、黃球、藍球各2個.每次從該箱中取1個球 (有放回,每球取到的機會均等),共取三次.設事件A:“第一次取到的球和第二次取到的球顏色相同”,事件B:“三次取到的球顏色都相同”,則P(B|A)=( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
已知箱中共有6個球,其中紅球、黃球、藍球各2個.每次從該箱中取1個球 (有放回,每球取到的機會均等),共取三次.設事件A:“第一次取到的球和第二次取到的球顏色相同”,事件B:“三次取到的球顏色都相同”,則P(B|A)=( )
A. B. C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com