精英家教網 > 高中數學 > 題目詳情

已知A、B、C三個箱子中各裝有2個完全相同的球,每個箱子里的球,有一個球標著號碼1,另一個球標著號碼2.現從A、B、C三個箱子中各摸出1個球.

(I)若用數組(x,y,z)中的x、y、z分別表示從A、B、C三個箱子中摸出的球的號碼,請寫出數組(x,y,z)的所有情形,并回答一共有多少種;

(Ⅱ)如果請您猜測摸出的這三個球的號碼之和,猜中有獎.那么猜什么數獲獎的可能性最大?請說明理由.

解:(Ⅰ)數組的所有情形為:(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2),共8種.

答:一共有8種.       5分

注:列出5、6、7種情形,得2分;列出所有情形,得4分;寫出所有情形共8種,得1分.

(Ⅱ)記“所摸出的三個球號碼之和為”為事件=3,4,5,6),  ……6分

易知,事件包含有1個基本事件,事件包含有3個基本事件,事件包含有3個基本事件,事件包含有1個基本事件,所以,      

,,.            …………………10分

故所摸出的兩球號碼之和為4、為5的概率相等且最大.

答:猜4或5獲獎的可能性最大.                         …………………12分

練習冊系列答案
相關習題

科目:高中數學 來源:2013-2014學年浙江考試院抽學校高三11月抽測測試理科數學試卷(解析版) 題型:選擇題

已知箱中共有6個球,其中紅球、黃球、藍球各2個.每次從該箱中取1個球 (有放回,每球取到的機會均等),共取三次.設事件A:“第一次取到的球和第二次取到的球顏色相同”,事件B:“三次取到的球顏色都相同”,則P(B|A)=(    )

A.            B.           C.            D.

 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知箱中共有6個球,其中紅球、黃球、藍球各2個.每次從該箱中取1個球 (有放回,每球取到的機會均等),共取三次.設事件A:“第一次取到的球和第二次取到的球顏色相同”,事件B:“三次取到的球顏色都相同”,則P(B|A)=(    )

A.            B.           C.            D.

查看答案和解析>>

同步練習冊答案