【題目】如圖,A,B,C為函數(shù)的圖象上的三點(diǎn),它們的橫坐標(biāo)分別是t、t+2、t+4,其中t≥1,
.
(1)設(shè)△ABC的面積為S,求S=f(t);
(2)判斷函數(shù)S=f(t)的單調(diào)性;
(3)求S=f(t)的最大值.
【答案】(1) S=
(2) S=f(t)在是是減函數(shù)
(3) 最大值是f (1)=
【解析】
解:(1)A、B、C三點(diǎn)坐標(biāo)分別為(t,t),(t+2,(t+2)),(t+4,(t+4)),由圖形,當(dāng)妨令三點(diǎn)A,B,C在x軸上的垂足為E,F,N,則△ABC的面積為
SABC=S梯形ABFE+S梯形BCNF﹣S梯形ACNE
=﹣[t(t+2)]﹣[(t+2)(t+4))]+2[t(t+4))]
=[t(t+4)(t+2)]
即△ABC的面積為S=f(t) (t≥1)
(2)f(t) (t≥1)是復(fù)合函數(shù),其外層是一個(gè)遞增的函數(shù),t≥1時(shí),內(nèi)層是一個(gè)遞減的函數(shù),故復(fù)合函數(shù)是一個(gè)減函數(shù),
(3)由(2)的結(jié)論知,函數(shù)在t=1時(shí)取到最大值,故三角形面積的最大值是
S=f(1)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)若直角三角形兩直角邊長(zhǎng)之和為12,求其周長(zhǎng)的最小值;
(2)若三角形有一個(gè)內(nèi)角為,周長(zhǎng)為定值,求面積的最大值;
(3)為了研究邊長(zhǎng)滿足的三角形其面積是否存在最大值,現(xiàn)有解法如下:(其中, 三角形面積的海倫公式),
∴
,
而,,,則,
但是,其中等號(hào)成立的條件是,于是與矛盾,
所以,此三角形的面積不存在最大值.
以上解答是否正確?若不正確,請(qǐng)你給出正確的答案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程](10分)
在極坐標(biāo)系中,圓C的極坐標(biāo)方程為,若以極點(diǎn)O為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系.
(1)求圓C的一個(gè)參數(shù)方程;
(2)在平面直角坐標(biāo)系中,是圓C上的動(dòng)點(diǎn),試求的最大值,并求出此時(shí)點(diǎn)P的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:①對(duì)于獨(dú)立性檢驗(yàn),的值越大,說(shuō)明兩事件相關(guān)程度越大,②以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是和,③某中學(xué)有高一學(xué)生400人,高二學(xué)生300人,高三學(xué)生200人,學(xué)校團(tuán)委欲用分層抽樣的方法抽取18名學(xué)生進(jìn)行問(wèn)卷調(diào)查,則高一學(xué)生被抽到的概率最大,④通過(guò)回歸直線= +及回歸系數(shù),可以精確反映變量的取值和變化趨勢(shì),其中正確的個(gè)數(shù)是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在上海自貿(mào)區(qū)的利好刺激下,公司開(kāi)拓國(guó)際市場(chǎng),基本形成了市場(chǎng)規(guī)模;自2014年1月以來(lái)的第個(gè)月(2014年1月為第一個(gè)月)產(chǎn)品的內(nèi)銷量、出口量和銷售總量(銷售總量=內(nèi)銷量+出口量)分別為、和(單位:萬(wàn)件),依據(jù)銷售統(tǒng)計(jì)數(shù)據(jù)發(fā)現(xiàn)形成如下?tīng)I(yíng)銷趨勢(shì):,(其中,為常數(shù),),已知萬(wàn)件,萬(wàn)件,萬(wàn)件.
(1)求,的值,并寫(xiě)出與滿足的關(guān)系式;
(2)證明:逐月遞增且控制在2萬(wàn)件內(nèi);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校辦工廠請(qǐng)了30名木工制作200把椅子和100張課桌.已知制作一張課桌與制作一把椅子的工時(shí)數(shù)之比為10:7,問(wèn)30名工人如何分組(一組制作課桌,另一組制作椅子)能使任務(wù)完成最快?請(qǐng)利用二分法的知識(shí)解答.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,三棱錐中,平面平面,是邊長(zhǎng)為4,的正三角形,是頂角 的等腰三角形,點(diǎn)為上的一動(dòng)點(diǎn).
(1)當(dāng)時(shí),求證:;
(2)當(dāng)直線與平面所成角為時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是R上的奇函數(shù).
(1)若x∈[,],求f(x)的取值范圍
(2)若對(duì)任意的x1∈[1,,總存在x2∈[,]使得mlog2(﹣6x12+24x1﹣16)﹣f(x2)0(m>0)成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com