【題目】如圖,直三棱柱, 的中點(diǎn).

1證明 平面;

2, 求點(diǎn)到平面的距離.

【答案】(1)證明見(jiàn)解析;(2).

【解析】試題分析:(1)連接,設(shè)的交點(diǎn)為,則的中點(diǎn),連接,又的中點(diǎn),由三角形中位線定理可得,從而根據(jù)線面平行的判定定理可得平面;(2)設(shè)點(diǎn)到平面的距離為,因?yàn)?/span>的中點(diǎn)在平面上,故到平面的距離也為,三棱錐的體積 的面積,由得結(jié)果.

試題解析:(1)連接,設(shè)的交點(diǎn)為,則的中點(diǎn),連接,又的中點(diǎn),所以.又平面 平面,所以平面.

(2)由, 的中點(diǎn),所以

在直三棱柱中, , ,所以,

,所以, ,所以.

設(shè)點(diǎn)到平面的距離為,因?yàn)?/span>的中點(diǎn)在平面上,

到平面的距離也為,三棱錐的體積,

的面積,則,得,

故點(diǎn)到平面的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】空間中有不共面的個(gè)點(diǎn).求證:存在無(wú)窮個(gè)平面,恰好通過(guò)其中的兩個(gè)點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:的右焦點(diǎn)為F,點(diǎn)A(一2,2)為橢圓C內(nèi)一點(diǎn)。若橢圓C上存在一點(diǎn)P,使得|PA|+|PF|=8,則m的取值范圍是( ).

A. B. [9,25] C. D. [3,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐各棱所在的6條直線上,互相垂直的最多有兒對(duì)?(每?jī)蓷l組成一對(duì))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】,設(shè)

(Ⅰ)求函數(shù)的周期及單調(diào)增區(qū)間。

(Ⅱ)設(shè)的內(nèi)角的對(duì)邊分別為,已知 ,求邊的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為抑制房?jī)r(jià)過(guò)快上漲和過(guò)度炒作,各地政府響應(yīng)中央號(hào)召,因地制宜出臺(tái)了系列房?jī)r(jià)調(diào)控政策.某市為擬定出臺(tái)房產(chǎn)限購(gòu)的年齡政策為了解人們對(duì)房產(chǎn)限購(gòu)年齡政策的態(tài)度,對(duì)年齡在歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持房產(chǎn)限購(gòu)的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:

年齡

支持的人數(shù)

15

5

15

28

17

1)由以上統(tǒng)計(jì)數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為以44歲為分界點(diǎn)的不同人群對(duì)房產(chǎn)限購(gòu)年齡政策的支持度有差異;

44歲以下

44歲及44歲以上

總計(jì)

支持

不支持

總計(jì)

2)若以44歲為分界點(diǎn),從不支持房產(chǎn)限購(gòu)的人中按分層抽樣的方法抽取8人參加政策聽(tīng)證會(huì).現(xiàn)從這8人中隨機(jī)抽2人.

①抽到1人是44歲以下時(shí),求抽到的另一人是44歲以上的概率.

②記抽到44歲以上的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

參考數(shù)據(jù):

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解甲、乙兩個(gè)工廠生產(chǎn)的輪胎的寬度是否達(dá)標(biāo),分別從兩廠隨機(jī)各選取了個(gè)輪胎,將每個(gè)輪胎的寬度(單位: )記錄下來(lái)并繪制出如下的折線圖:

(1)分別計(jì)算甲、乙兩廠提供的個(gè)輪胎寬度的平均值;

(2)輪胎的寬度在內(nèi),則稱這個(gè)輪胎是標(biāo)準(zhǔn)輪胎.

(i)若從甲乙提供的個(gè)輪胎中隨機(jī)選取個(gè),求所選的輪胎是標(biāo)準(zhǔn)輪胎的概率;

(ii)試比較甲、乙兩廠分別提供的個(gè)輪胎中所有標(biāo)準(zhǔn)輪胎寬度的方差大小,根據(jù)兩廠的標(biāo)準(zhǔn)輪胎寬度的平均水平及其波動(dòng)情況,判斷這兩個(gè)工廠哪個(gè)廠的輪胎相對(duì)更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某班學(xué)生喜好體育運(yùn)動(dòng)是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:

喜好體育運(yùn)動(dòng)

不喜好體育運(yùn)動(dòng)

男生

5

女生

10

已知按喜好體育運(yùn)動(dòng)與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運(yùn)動(dòng)的人數(shù)為6

1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

2)能否在犯錯(cuò)概率不超過(guò)0.01的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān)?說(shuō)明你的理由;

3)在上述喜好體育運(yùn)動(dòng)的6人中隨機(jī)抽取兩人,求恰好抽到一男一女的概率.

參考公式:

獨(dú)立性檢驗(yàn)臨界值表:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,底面,點(diǎn)的中點(diǎn),,交于點(diǎn)

(1)求證:平面平面;

(2)求三棱錐的體積

查看答案和解析>>

同步練習(xí)冊(cè)答案