在數(shù)列{an}中,a1=1,an+1-an=n(n∈N*),則a100的值為
 
考點:數(shù)列遞推式
專題:點列、遞歸數(shù)列與數(shù)學歸納法
分析:由數(shù)列遞推式結合已知求出數(shù)列的通項,則a100的值可求.
解答: 解:由an+1-an=n(n∈N*),得:
an=(an-an-1)+(an-1+an-2)+…+(a2-a1)+a1(n≥2),
則an=(n-1)+(n-2)+…+1+a1 
=
n(n-1)
2
+a1

∵a1=1,
an=
n(n-1)
2
+1

a100=
100×99
2
+1=4951

故答案為:4951.
點評:本題考查了數(shù)列遞推式,考查了累加法求數(shù)列的通項公式,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列說法中正確的是
 

①若散點圖所有點都在一條直線附近,則這條直線為回歸直線;
②已知隨機變量?服從正態(tài)分布N(2,a2),且P(ξ<4)=0.9,則P(0<ξ<2)=0.4;
0
-1
1-x2
dx=
1
0
1-x2
dx=
π
4
;
④E(2ξ+3)=2E(ξ+3);D(2ξ+3)=2D(ξ)+3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于x的方程sin2x+2sinx-1+m=0有解.則實數(shù)m的范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin
x
2
,x∈R,將函數(shù)y=f(x)圖象上所有點的橫坐標縮短為原來的
1
2
倍(縱坐不變),得到函數(shù)g(x)的圖象,則關于f(x)•g(x)有下列命題:
①函數(shù)y=f(x)•g(x)是奇函數(shù);
②函數(shù)y=f(x)•g(x)不是周期函數(shù);
③函數(shù)y=f(x)•g(x)的圖象關于點(π,0)中心對稱;
④函數(shù)y=f(x)•g(x)的最大值為
3
3

其中真命題為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A、B兩盞路燈之間長度是30米,想在其間隨意安兩盞路燈C、D,A與C,B與D之間的距離都不小于10米的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示是f′(x)的圖象,則正確的判斷個數(shù)是( 。
(1)f(x)在(-5,-3)上是減函數(shù);
(2)x=4是極大值點;
(3)x=2是極值點;
(4)f(x)在(-2,2)上先減后增.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設m,n是兩條不同的直線,α、β、γ是三個不同的平面,給出下列命題,正確的是( 。
A、若m?β,α⊥β,則m⊥α
B、若m∥α,m⊥β,則α⊥β
C、若α⊥β,α⊥γ,則β⊥γ
D、若α∩γ=m,β∩γ=n,m∥n,則α∥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=acos(πx+β)+bsin(πx+α),且f(2013)=6,則f(2014)的值是(  )
A、-6B、-1C、-3D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體中,直線A1B與B1C所成的角的大小為(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

同步練習冊答案