如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中點(diǎn).
(1)求證:EC∥平面PAD
(2)求證:平面EAC⊥平面PBC.
考點(diǎn):平面與平面垂直的判定,直線與平面平行的判定
專題:證明題,空間位置關(guān)系與距離
分析:(1)取線段AB的中點(diǎn)F,連接EF,CF,證明四邊形ADCF是平行四邊形,進(jìn)而證明面CFE∥面PAD,即可證明EC∥平面PAD;
(2)由題意可得AC⊥PC,由AC2+BC2=AB2,可求得AC⊥BC,從而有AC⊥平面PBC,利用面面垂直的判定定理即可證得平面EAC⊥平面PBC
解答: 證明:(1)取線段AB的中點(diǎn)F,連接EF,CF.則AF=CD,AF∥CD,
所以四邊形ADCF是平行四邊形,
則CF∥AD;
又EF∥AP且CF∩EF=F,
∴面CFE∥面PAD,
又EC?面CEF,
∴EC∥平面PAD;
(2)∵PC⊥平面ABCD,AC?平面ABCD,∴AC⊥PC,
∵AB=2,AD=CD=1,∴AC=BC=
2

∴AC2+BC2=AB2,∴AC⊥BC,
又BC∩PC=C,∴AC⊥平面PBC,
∵AC?平面EAC,∴平面EAC⊥平面PBC.
點(diǎn)評(píng):本題考查線面平行、面面垂直,解題的關(guān)鍵是掌握線面平行、面面垂直的判定,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,且
2
x
+
1
y
=1,若x+2y>m2+2m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+x2+bx,g(x)=alnx,(a>0).
(1)當(dāng)a=x時(shí),求函數(shù)g(x)的單調(diào)區(qū)間;
(2)若f(x)存在極值點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足an+1=Sn+n+1(n∈N*),且a2,a3+2,a4成等差數(shù)列.
(1)求a1;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)證明:
n
2
-
1
3
a1
a2
+
a2
a3
+…
an
an+1
n
2
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某超市舉辦促銷活動(dòng):購(gòu)物額在200元及以內(nèi)不予優(yōu)惠,在200-500元之間可優(yōu)惠10%,超出500元之后,超出部分優(yōu)惠20%,且原優(yōu)惠條件不變.
(1)寫出顧客購(gòu)物額與應(yīng)付金額之間的關(guān)系式;
(2)畫出程序框圖,要求輸入購(gòu)物額能后輸出實(shí)付貨款.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,且函數(shù)g(x)=
1
2
x2+nx+mf′(x)(m,n∈R)當(dāng)且僅當(dāng)在x=1處取得極值,其中f′(x)為f(x)的導(dǎo)函數(shù),求m的取值范圍;
(3)若函數(shù)y=f(x)在區(qū)間(
1
3
,3)內(nèi)的圖象上存在兩點(diǎn),使得在該兩點(diǎn)處的切線相互垂直,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為其內(nèi)角A,B,C的對(duì)邊,且cos(B-C)-2sinBsinC=-
1
2

(Ⅰ)求角A的大小;
(Ⅱ)若a=3,sin
B
2
=
1
3
,求邊b的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x3+11在點(diǎn)P(1,12)處的切線與y軸交點(diǎn)的縱坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b∈R,i是虛數(shù)單位,則“ab=0”是“復(fù)數(shù)a+
b
i
為純虛數(shù)”的
 
條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案