【題目】已知點P在曲線x2+y2=1上運動,過點Px軸的垂線,垂足為Q,動點M滿足.

1)求動點M的軌跡方程;

2)點AB在直線xy4=0上,且AB=4,求△MAB的面積的最大值.

【答案】1x2+=12

【解析】

1)設(shè),再由已知將表示,代入曲線方程,即可求解;

2)要求△MAB的面積的最大值,只需求點到直線距離的最大值,當(dāng)點為與直線平行且距離較遠的切線的切點時,為所求的點,轉(zhuǎn)化為求與直線平行的切線方程,即可得出結(jié)論.

1)設(shè),

∵動點M滿足.,

,解得:,

代入曲線,可得:.

∴動點M的軌跡方程為: .

2)設(shè)與直線xy4=0平行且與橢圓相切的直線方程為:xy+m=0,

聯(lián)立,化為:9x2+2mx+m28=0,

,解得..

可得切線:xy+3=0與直線xy4=0的距離

d=.

∴△MAB的面積的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)若上存在兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點的坐標分別為.三角形的兩條邊,所在直線的斜率之積是.

1)求點的軌跡方程;

2)設(shè)直線方程為,直線方程為,直線,點,關(guān)于軸對稱,直線軸相交于點.的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三角形ABE與菱形ABCD所在的平面互相垂直,,MAB的中點.

1)求證:;

2)求二面角的余弦值;

3)在線段EC上是否存在點P,使得直線AP與平面ABE所成的角為,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為2的正方體中,點P在正方體的對角線AB上,點Q在正方體的棱CD上,若P為動點,Q為動點,則PQ的最小值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓, 是圓M內(nèi)一個定點,P是圓上任意一點,線段PN的垂直平分線l和半徑MP相交于點Q,當(dāng)點P在圓M上運動時,點Q的軌跡為曲線E

1)求曲線E的方程;

2)過點D(0,3)作直線m與曲線E交于AB兩點,點C滿足 (O為原點),求四邊形OACB面積的最大值,并求此時直線m的方程;

3)已知拋物線上,是否存在直線與曲線E交于G,H,使得G,H的中點F落在直線y=2x上,并且與拋物線相切,若直線存在,求出直線的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一項針對都市熟男(三線以上城市,歲男性)消費水平的調(diào)查顯示,對于最近一年內(nèi)是否購買過以下七類高價商品,全體被調(diào)查者,以及其中包括的1980年及以后出生(80后)被調(diào)查者,1980年以前出生(80前)被調(diào)查者回答“是”的比例分別如下:

全體被調(diào)查者

80后被調(diào)查者

80前被調(diào)查者

電子產(chǎn)品

56.9%

66.0%

48.5%

服裝

23.0%

24.9%

21.2%

手表

14.3%

19.4%

9.7%

運動、戶外用品

10.4%

11.1%

9.7%

珠寶首飾

8.6%

10.8%

6.5%

箱包

8.1%

11.3%

5.1%

個護與化妝品

6.6%

6.0%

7.2%

以上皆無

25.3%

17.9%

32.1%

根據(jù)表格中數(shù)據(jù)判斷,以下分析錯誤的是( )

A. 都市熟男購買比例最高的高價商品是電子產(chǎn)品

B. 從整體上看,80后購買高價商品的意愿高于80前

C. 80前超過3成一年內(nèi)從未購買過表格中七類高價商品

D. 被調(diào)查的都市熟男中80后人數(shù)與80前人數(shù)的比例大約為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,,且,.

1)求證:;

2)在線段,是否存在一點,使得二面角的大小為,如果存在,與平面所成角的正弦值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),是自然對數(shù)的底數(shù).

(1)當(dāng)時,求的單調(diào)增區(qū)間;

(2)若對任意的),求的最大值;

(3)若的極大值為,求不等式的解集.

查看答案和解析>>

同步練習(xí)冊答案