已知集合M={a|a=x2-y2,x,y∈Z},證明:一切奇數(shù)屬于M.
證明:對(duì)于任意奇數(shù)a,a可以表示為2n+1(n∈Z),而2n+1=(n+1)2-n2,所以a∈M. |
證明抽象元素屬于某一集合就是將抽象元素設(shè)法表示為符合此集合的特征屬性的形式.關(guān)于集合M,我們還可以獲得以下一些結(jié)論: ①M(fèi)中的所有元素都屬于Z;②M是無(wú)限集合;③偶數(shù)4n-2(n∈Z)不屬于M;④屬于M的兩個(gè)整數(shù),其積仍屬于M;⑤所有的完全平方數(shù)屬于M;⑥集合M中的數(shù)在數(shù)軸上的點(diǎn)關(guān)于原點(diǎn)O對(duì)稱(chēng).請(qǐng)你試著證明上述結(jié)論,并看看還能得到什么其他新的結(jié)論. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書(shū)) 題型:013
已知集合M={a,b,c},N={0,1},映射f:M→N滿(mǎn)足f(a)+f(b)=f(c),那么映射f:M→N的個(gè)數(shù)是(如下圖所示)
[ ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書(shū)) 題型:022
已知集合M={a,0},N={x|x2-3x<0,x∈Z},且M∩N={1},記P=M∪N.那么集合P的子集為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:“伴你學(xué)”新課程 數(shù)學(xué)·必修3、4(人教B版) 人教B版 題型:013
已知集合M={a|a=(1,2)+λ(3,4),λ∈R},N={a|a=(-2,-2)+λ(4,5),λ∈R},則M∩N=
A.{(1,1)}
B.{(-2,-2)}
C.{(1,1),(-2,-2)}
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知集合M={-1,1,2,4},N={0,1,2},給出下列四個(gè)對(duì)應(yīng)法則:①y=x2,②y=x+1,③y=2x,④y=log2|x|,其中能構(gòu)成從M到N的函數(shù)的是 ( )
A.① B.② C.③ D.④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com