分析:(1)求導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,即可求a1,a2的值;
(2)求導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,求最值,從而可求數(shù)列{an}的通項公式.
解答:解:(1)當(dāng)n=1時,
f1(x)=x(1-x)2,則
f1′(x)=(1-x)2-2x(1-x)=(1-x)(1-3x)當(dāng)
x∈[,1]時,f
1'(x)≤0,即函數(shù)f
1(x)在
[,1]上單調(diào)遞減,∴
a1=f1()=,
當(dāng)n=2時,
f2(x)=x2(1-x)2,則
f2′(x)=2x(1-x)2-2x2(1-x)=2x(1-x)(1-2x)
當(dāng)
x∈[,1]時,f
2'(x)≤0,即函數(shù)f
2(x)在
[,1]上單調(diào)遞減,
∴
a2=f2()=(2)令f
n'(x)=0得x=1或
x=,
∵當(dāng)n≥3時,
∈[,1]且當(dāng)
x∈[,)時,f
n'(x)>0,
當(dāng)
x∈(,1]時f
n'(x)<0,故f
n(x)在
x=處取得最大值,
即當(dāng)n≥3時,
an=fn()=()n()2=
,------(*)
當(dāng)n=2時(*)仍然成立,
綜上得
an=.
點評:本題考查導(dǎo)數(shù)知識的運用,考查數(shù)列的通項,考查學(xué)生的計算能力,屬于中檔題.