(本小題滿分14分)
如圖,在三棱錐P-ABC中,底面△ABC為等邊三角形,∠APC=90°,PB=AC=2PA=4,O為AC的中點(diǎn)。

(Ⅰ)求證:BO⊥PA;
(Ⅱ)判斷在線段AC上是否存在點(diǎn)Q(與點(diǎn)O不重合),使得△PQB為直角三角形?若存在,試找出一個(gè)點(diǎn)Q,并求的值;若不存在,說(shuō)明理由。

(Ⅰ)在等邊△ABC中BO⊥AC,BO=,在直角△PAC中PO=2,在△PBO中,由PB=4,得PB2=PO2+BO2所以BO⊥PO所以BO⊥平面PAC所以BO⊥PA(Ⅱ)線段AC上存在點(diǎn)Q, 滿足使得△PQB為直角三角形

解析試題分析:(Ⅰ)證明:如圖,連結(jié)PO,

在等邊△ABC中,因?yàn)镺是AC的中點(diǎn),且AC=4,
所以BO⊥AC,BO=。
在直角△PAC中,因?yàn)镺是斜邊AC的中點(diǎn),且AC=4,
所以PO=2,
在△PBO中,由PB=4,得PB2=PO2+BO2,
所以BO⊥PO。    3分
又因?yàn)锳C∩PO=O,AC平面PAC,PO平面PAC,
所以BO⊥平面PAC,  5分
又因?yàn)镻A平面PAC,
所以BO⊥PA。         7分
(Ⅱ)答:線段AC上存在點(diǎn)Q,使得△PQB為直角三角形。
具體過(guò)程如下:
如圖,過(guò)P作PM⊥AC于點(diǎn)M,連結(jié)BM,
因?yàn)锽O⊥平面PAC,
所以BO⊥PM。
又因?yàn)锽O∩AC=O,BO平面ABC,AC平面ABC,
所以PM⊥平面ABC,                                                10分
所以PM⊥BM,即△PMB為直角三角形。
故當(dāng)點(diǎn)Q與點(diǎn)M重合時(shí),△PQB為直角三角形。                            12分
在直角△PAC中,由∠APC=90°,AC=2PA=4,
得AM=1,(即AQ=1),MC=3(即QC=3),
所以當(dāng)時(shí),△PQB為直角三角形。                    14分
考點(diǎn):線線垂直線面垂直的判定和性質(zhì)
點(diǎn)評(píng):線線垂直與線面垂直之間可以互為條件結(jié)論,本題主要利用兩者間的互相推出關(guān)系證明計(jì)算

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分) 本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分6分.
如圖已知四棱錐的底面是邊長(zhǎng)為6的正方形,側(cè)棱的長(zhǎng)為8,且垂直于底面,點(diǎn)分別是的中點(diǎn).求

(1)異面直線所成角的大小(結(jié)果用反三角函數(shù)值表示);
(2)四棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,正方形所在平面與平面四邊形所在平面互相垂直,△是等腰直角三角形,

(1)線段的中點(diǎn)為,線段的中點(diǎn)為,求證:;
(2)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
四棱錐,面⊥面.側(cè)面是以為直角頂點(diǎn)的等腰直角三角形,底面為直角梯形,,,上一點(diǎn),且.

(Ⅰ)求證
(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題12分)如圖,平面,點(diǎn)上,,四邊形為直角梯形,,,

(1)求證:平面
(2)求二面角的余弦值;
(3)直線上是否存在點(diǎn),使∥平面,若存在,求出點(diǎn);若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)三棱錐中,,,

(Ⅰ)求證:平面平面
(Ⅱ)若,且異面直線的夾角為時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
在正四棱錐V - ABCD中,P,Q分別為棱VB,VD的中點(diǎn), 點(diǎn)M在邊BC上,且BM: BC = 1 : 3,AB =2,VA =" 6."

(I )求證CQ∥平面PAN;
(II)求證:CQ⊥AP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)
如圖,在直三棱柱ABC-A1B1C1中,,,的中點(diǎn),中點(diǎn).

(1)求證:∥面
(2)求直線EF與直線所成角的正切值;
(3)設(shè)二面角的平面角為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
如圖,在四棱錐S - ABCD中,底面ABCD是直角梯形,側(cè)棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中點(diǎn).

(Ⅰ)求證:AM∥面SCD;
(Ⅱ)求面SCD與面SAB所成二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)N是直線CD上的動(dòng)點(diǎn),MN與面SAB所成的角為,求sin的最大值,

查看答案和解析>>

同步練習(xí)冊(cè)答案