已知三棱錐P-ABC的所有頂點(diǎn)都在球O的球面上,PC為球O的直徑,且PC⊥OA,PC⊥OB,△OAB為等邊三角形,三棱錐P-ABC的體積為
4
3
3
,則球O的半徑為
 
考點(diǎn):球的體積和表面積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:欲求球的半徑r.利用截面的性質(zhì)即可得到三棱錐P-ABC的體積可看成是兩個(gè)小三棱錐P-ABO和C-ABO的體積和,即可計(jì)算出三棱錐的體積,從而建立關(guān)于r的方程,即可求出r,從而解決問(wèn)題.
解答: 解:設(shè)球心為O,球的半徑r.
∵PC⊥OA,PC⊥OB,∴PC⊥平面AOB,
三棱錐P-ABC的體積可看成是兩個(gè)小三棱錐P-ABO和C-ABO的體積和.
∴V三棱錐P-ABC=V三棱錐P-ABO+V三棱錐C-ABO=
1
3
×
3
4
×r2×r×2=
4
3
3
,
∴r=2.
故答案為:2.
點(diǎn)評(píng):本題考查棱錐的體積,考查球內(nèi)接多面體,解題的關(guān)鍵是確定三棱錐P-ABC的體積可看成是兩個(gè)小三棱錐P-ABO和C-ABO的體積和.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

家住H小區(qū)的王先生開(kāi)車(chē)到C單位上班有L1、L2兩條路線(如圖),其中路線L1上有A1、A2、A3三個(gè)路口,各路口遇到紅燈的概率均為
1
2
;路線L2上有B1、B2兩個(gè)路口,各路口遇到紅燈的概率依次為
3
4
3
5

(1)若走路線L1,求最多遇到1次紅燈的概率;
(2)王先生經(jīng)過(guò)研究得到途中所產(chǎn)生的費(fèi)用如表:
路線距離(公里)行駛費(fèi)用(元/公里)遇紅燈時(shí)  費(fèi)用(元/次)
L1201.51.5
L23011
請(qǐng)你根據(jù)上述信息幫助王先生分析,選擇哪條路線上班更好些,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=2
5
,
b
=(-1,3),若
a
b
,則
a
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校共有1200名學(xué)生,現(xiàn)采用按性別分層抽樣的方法抽取一個(gè)容量為200的樣本進(jìn)行健康狀況調(diào)查,若抽到的男生比女生多10人,則該校男生人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1的側(cè)棱A1A和B1B上各有一個(gè)動(dòng)點(diǎn)P,Q,且滿足A1P=BQ,M是棱CA上的動(dòng)點(diǎn),則
VM-ABQP
VABC-A1B1C1-VM-ABQP
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=f(x)的圖象為開(kāi)口向下的拋物線,且對(duì)任意x∈R都有f(1+x)=f(1-x).若向量
a
=(m,-1),
b
=(m,-2),則滿足不等式f(
a
b
)>f(-1)的m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)于?x∈R,|x-a|+|x-a2|≥2恒成立,則實(shí)數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從甲乙兩個(gè)城市分別隨機(jī)抽取15臺(tái)自動(dòng)售貨機(jī),對(duì)其銷(xiāo)售額進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)數(shù)據(jù)用莖葉圖表示(如圖所示),設(shè)甲乙兩組數(shù)據(jù)的平均數(shù)分別為
.
x1
,
.
x2
,中位數(shù)分別為m1,m2,則(  )
A、
.
x1
.
x2
,m1<m2
B、
.
x1
.
x2
,m1>m2
C、
.
x1
.
x2
,m1>m2
D、
.
x1
.
x2
,m1<m2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,{an}的前n項(xiàng)和為Sn,則使得Sn達(dá)到最大的n是(  )
A、18B、19C、20D、21

查看答案和解析>>

同步練習(xí)冊(cè)答案