已知函數(shù)
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若,設(shè)是函數(shù)的兩個(gè)極值點(diǎn),且,記分別為的極大值和極小值,令,求實(shí)數(shù)的取值范圍.
(1);時(shí),,.(2)
解析試題分析:(1)首先求出函數(shù)的導(dǎo)數(shù),然后求出滿足或的區(qū)間即可.(2)根據(jù)極值點(diǎn)的概念得,在由已知條件求出,極值m,n的表達(dá)式,然后整理= ,構(gòu)造函數(shù):令,通過求導(dǎo),證明,從而可得即可.
試題解析:(1) , 2分 令,
①.
②.時(shí),,令
, 6分
(2)依題意有
, 9分
令,
13分
考點(diǎn):1.求函數(shù)的導(dǎo)數(shù)和導(dǎo)數(shù)的性質(zhì);2.導(dǎo)數(shù)的極值和導(dǎo)數(shù)性質(zhì)的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(其中,e是自然對數(shù)的底數(shù)).
(Ⅰ)若,試判斷函數(shù)在區(qū)間上的單調(diào)性;
(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn),(),求k的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,試證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場預(yù)計(jì)2014年從1月起前個(gè)月顧客對某種商品的需求總量(單位:件)
(1)寫出第個(gè)月的需求量的表達(dá)式;
(2)若第個(gè)月的銷售量(單位:件),每件利潤(單位:元),求該商場銷售該商品,預(yù)計(jì)第幾個(gè)月的月利潤達(dá)到最大值?月利潤的最大值是多少?(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖像在點(diǎn)處的切線方程為.
(I)求實(shí)數(shù),的值;
(Ⅱ)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖象在與軸交點(diǎn)處的切線方程是.
(I)求函數(shù)的解析式;
(II)設(shè)函數(shù),若的極值存在,求實(shí)數(shù)的取值范圍以及函數(shù)取得極值時(shí)對應(yīng)的自變量的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若曲線在和處的切線相互平行,求的值;
(2)試討論的單調(diào)性;
(3)設(shè),對任意的,均存在,使得.試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)如果存在零點(diǎn),求的取值范圍
(2)是否存在常數(shù),使為奇函數(shù)?如果存在,求的值,如果不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com