已知數(shù)列{an}的前n項的和Sn=(n+1)bn,其中{bn}是首項為1,公差為2的等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若cn=
1
an(2bn+5)
,求數(shù)列{cn}的前n項和Tn
考點:數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)利用等差數(shù)列的通項公式可得bn,再利用“當(dāng)n=1時,a1=S1;當(dāng)n≥2時,an=Sn-Sn-1”即可得出an;
(2)利用“裂項求和”即可得出.
解答: 解:(1)∵{bn}是首項為1,公差為2的等差數(shù)列,
∴bn=1+2(n-1)=2n-1,
Sn=2n2+n-1,
當(dāng)n=1時,a1=S1=2;當(dāng)n≥2時,an=Sn-Sn-1=2n2+n-1-[2(n-1)2+(n-1)-1]=4n-1.
an=
2(n=1)
4n-1(n≥2)

(2)由(1)可得:c1=
1
14
,當(dāng)n≥2時cn=
1
4
(
1
4n-1
-
1
4n+3
)

Tn=
1
14
+
1
4
(
1
7
-
1
11
+
1
11
-
1
15
+…+
1
4n-1
-
1
4n+3
)
=
1
14
+
1
4
(
1
7
-
1
4n+3
)=
3
28
-
1
4(4n+3)

綜上:Tn=
3
28
-
1
4(4n+3)
(n∈N*)
點評:本題考查了等差數(shù)列的通項公式、利用“當(dāng)n=1時,a1=S1;當(dāng)n≥2時,an=Sn-Sn-1”求數(shù)列的通項公式、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某研究性學(xué)習(xí)小組對全班50人的情商進行調(diào)查,按照區(qū)間進行分組,得到的情商的分布圖,則情商在90-105的人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O為原點,
OA
=(3,1),
OB
=(-1,2)
OC
OB
.
BC
OA
,試求滿足
OD
+
OA
=
OC
OD
的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn=1+
3
2
+
5
22
+…+
2n-1
2n-1
,則Sn等于( 。
A、5-
n+2
2n-2
B、4-
2n+1
2n-1
C、3-
2n-1
2n-1
D、6-
2n+3
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等邊△ABC邊長為2,則
AB
BC
的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向等腰直角三角形ABC(其中AC=BC)內(nèi)任意投一點M,則AM小于AC的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司對近八年的廣告費x(萬元)與銷售收入y(萬元)進行統(tǒng)計,得了一組數(shù)據(jù)(xi,yi)(i=1,2,3…8),根據(jù)它們的散點可知x,y具有線性相關(guān)關(guān)系,且它們之間的回歸方程為
y
=
1
3
x+18.若x1+x2+…+x8=24,則y1+y2+…+y8=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+(y+1)2=1的圓心坐標(biāo)是
 
,如果直線x+y+a=0與該圓有公共點,那么實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

目標(biāo)函數(shù)z=2x+y,變量x,y滿足
x-4y+3≤0
3x+5y≤25
x≥1
,則有( 。
A、zmax=12,zmin=3
B、zmax=10,zmin=
32
5
C、zmin=3,z無最大值
D、z既無最大值,也無最小值

查看答案和解析>>

同步練習(xí)冊答案