【題目】如圖,在四棱錐中,為等邊三角形,,,且,,,為中點.
(1)求證:平面平面;
(2)若線段上存在點,使得二面角的大小為,求的值;
(3)在(2)的條件下,求點到平面的距離.
【答案】(1)證明見解析;(2);(3).
【解析】分析:(1)證明PE⊥AD,PE⊥BE,即可證明PE⊥平面ABCD,從而證明平面PAD⊥平面ABCD;
(2)建立空間直角坐標系,利用坐標表示向量,求出平面EBQ和平面EBC的法向量,由此表示二面角Q-BE-C,求出的值;
(3)利用在平面EBQ法向量上的投影,求出點C到平面QEB的距離.
(1)證明:連接,,
∵是等邊三角形,為中點,∴,
又∵,∴,,∴,且,
∴四邊形為矩形,∴,,
∴,∴,
又∵,∴平面,
又∵平面,∴平面平面.
(2)如圖建系,,,,,,
設,,
∴ ,
設平面的法向量為,
∴,
∴,
平面的法向量不妨設為,
∴,
∴,∴或(舍),
∴.
(3).
科目:高中數(shù)學 來源: 題型:
【題目】某學校研究性學習小組調(diào)查學生使用智能手機對學習成績的影響,詢問了30名同學,得到如下的列聯(lián)表:
使用智能手機 | 不使用智能手機 | 總計 | |
學習成績優(yōu)秀 | 4 | 8 | 12 |
學習成績不優(yōu)秀 | 16 | 2 | 18 |
總計 | 20 | 10 | 30 |
(Ⅰ)根據(jù)以上列聯(lián)表判斷,能否在犯錯誤的概率不超過0.005的前提下認為使用智能手機對學習成績有影響?
(Ⅱ)從使用智能手機的20名同學中,按分層抽樣的方法選出5名同學,求所抽取的5名同學中“學習成績優(yōu)秀”和“學習成績不優(yōu)秀”的人數(shù);
(Ⅲ)從問題(Ⅱ)中被抽取的5名同學,再隨機抽取3名同學,試求抽取3名同學中恰有2名同學為“學習成績不優(yōu)秀”的概率.
參考公式:,其中
參考數(shù)據(jù):
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】人造地球衛(wèi)星繞地球運行遵循開普勒行星運動定律:衛(wèi)星在以地球為焦點的橢圓軌道上繞地球運行時,其運行速度是變化的,速度的變化服從面積守恒規(guī)律,即衛(wèi)星的向徑(衛(wèi)星至地球的連線)在相同的時間內(nèi)掃過的面積相等.設橢圓的長軸長、焦距分別為李明根據(jù)所學的橢圓知識,得到下列結論:
①衛(wèi)星向徑的最小值為,最大值為;
②衛(wèi)星向徑的最小值與最大值的比值越小,橢圓軌道越扁;
③衛(wèi)星運行速度在近地點時最小,在遠地點時最大
其中正確結論的個數(shù)是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍;
(2)當且時,不等式在上恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】共享單車是城市慢行系統(tǒng)的一種創(chuàng)新模式,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20 000元,每生產(chǎn)一輛新樣式單車需要增加投入100元.根據(jù)初步測算,自行車廠的總收益(單位:元)滿足分段函數(shù) 其中x是新樣式單車的月產(chǎn)量(單位:輛),利潤=總收益-總成本.
(1)試將自行車廠的利潤y元表示為月產(chǎn)量x的函數(shù);
(2)當月產(chǎn)量為多少件時自行車廠的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,,不在軸上的動點滿足于點為的中點。
(1)求點的軌跡的方程;
(2)設曲線與軸正半軸的交點為,斜率為的直線交于兩點,記直線的斜率分別為,試問是否為定值?若是,求出該定值;若不是,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)市場調(diào)查,某門市部的一種小商品在過去的20天內(nèi)的日銷售量(件)與價格(元)均為時間(天)的函數(shù),且日銷售量近似滿足函數(shù)(件),而且銷售價格近似滿足于(元).
(1)試寫出該種商品的日銷售額與時間的函數(shù)表達式;
(2)求該種商品的日銷售額的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某水產(chǎn)試驗廠實行某種魚的人工孵化,10 000個魚卵能孵化8 513尾魚苗,根據(jù)概率的統(tǒng)計定義解答下列問題:
(1)這種魚卵的孵化率(孵化概率)是多少?
(2)30 000個魚卵大約能孵化多少尾魚苗?
(3)要孵化5 000尾魚苗,大概需要多少個魚卵?(精確到百位)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,是圓內(nèi)一個定點,是圓上任意一點.線段的垂直平分線和半徑相交于點.
(Ⅰ)當點在圓上運動時,點的軌跡是什么曲線?并求出其軌跡方程;
(Ⅱ)過點作直線與曲線交于、兩點,點關于原點的對稱點為,求的面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com