關于x的方程2x+log2a=2有正根,則實數(shù)a取值范圍是________.

(0,2)
分析:由題意可得原方程等價于:2x=2-log2a,所以原方程有正根即方程2x=2-log2a有正根,又當x>0時有2x>1,可得2-log2a>1,進而結合對數(shù)函數(shù)的性質(zhì)得到答案.
解答:方程2x+log2a=2可化簡為:2x=2-log2a,
因為方程2x+log2a=2有正根,
所以方程2x=2-log2a有正根.
由題意可得:當x>0時有2x>1,所以2-log2a>1,
解得:0<a<2.
故答案為:(0,2).
點評:解決此題的關鍵是熟練掌握指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,以及兩個函數(shù)的特殊點的應用,此題考查了轉(zhuǎn)化與化歸的數(shù)學思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知A,B,C是直線l上的不同的三點,O是直線外一點,向量
OA
,
OB
OC
滿足
OA
-(
3
2
x2+1)•
OB
-[ln(2+3x)-y]•
OC
=
0
,記y=f(x).
(1)求函數(shù)y=f(x)的解析式;
(2)若關于x的方程f(x)=2x+b在[0,1]上恰有兩個不同的實根,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B、C是直線l上不同的三點,O是l外一點,向量
OA
OB
,
OC
滿足:
OA
-(
3
2
x2+1)•
OB
-[ln(2+3x)-y]•
OC
=
0
.記y=f(x).
(Ⅰ)求函數(shù)y=f(x)的解析式:
(Ⅱ)若對任意x∈[
1
6
,
1
3
]
,不等式|a-lnx|-ln[f'(x)-3x]>0恒成立,求實數(shù)a的取值范圍:
(Ⅲ)若關于x的方程f(x)=2x+b在(0,1]上恰有兩個不同的實根,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A,B,C是直線l上不同的三點,O是l外一點,向量
OA
,
OB
OC
 滿足:
OA
-(
3
2
x2+1)
OB
-[ln(2+3x)-y]
OC
=
0
,記y=f(x).
(1)求函數(shù)y=f(x)的解析式:
(2)若關于x的方程f(x)=2x+b在(0,1]上恰有兩個不同的實根,求實數(shù)b的取值范圍;
(3)若對任意x∈[
1
6
,
1
3
]
,不等式|a-lnx|-ln[f′(x)-3x]>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于x的方程ax+2x-4=0(a>0,a≠1)的所有根為u1,u2,…,uk,(k∈N*),關于x的方程loga2x=2-x的所有根為v1,v2,…,vl,(l∈N*),則
u1+u2+…+uk+v1+v2+…vl
k+l
的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•中山一模)已知A、B、C是直線l上的不同的三點,O是直線外一點,向量
OA
、
OB
OC
滿足
OA
-(
3
2
x2+1)•
OB
-[ln(2+3x)-y]•
OC
=
0
,記y=f(x).
(1)求函數(shù)y=f(x)的解析式;
(2)若x∈[
1
6
1
3
]
,a>ln
1
3
,證明:不等式|a-lnx|>ln[f′(x)-3x]成立;
(3)若關于x的方程f(x)=2x+b在[0,1]上恰有兩個不同的實根,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習冊答案