曲邊梯形由曲線y=ex,y=0,x=1,x=5所圍成,過曲線y=ex,x∈[1,5]上一點P作切線,使得此切線從曲邊梯形上切出一個面積最大的普通梯形,這時點P的坐標是   
【答案】分析:設出P的坐標,求出切線的斜率,寫出切線的方程,表示出切出的梯形的面積,把面積的表示式去掉絕對值,得到兩種不同的情況,針對于兩種不同的情況進行討論,利用導數(shù)求出最值.
解答:解:設p點坐標為(m,e m),則切線的斜率為k=em
設切線方程:y=kx+b
把p點坐標代入直線方程可求的截距b=em-mem<0
切線方程為:y=emx+(1-m)em
那么切出來的梯形的面積為
S=(|k+b|+|5k+b|)(5-1)=2(|2-m|+|6-m|)e m  1≤m≤5
①當1≤m≤2時,S=4(4-m)e m
②當2<m≤5時,S=8e m
當1≤m≤2時,S=4(4-m)e m
求導得S'=4[(4-m)em-e m]=4(3-m)e m>0 (1≤m≤2)
∴S=4(4-m)e m在[1,2]上單調(diào)增,且當m=2時有最大值Smax=8e2
當m>2時,切線方程中令y=0,解得x=m-1>1,無法構成梯形,
四條直線(y=0,x=1,x=5,過點P的切線)構成的兩個三角形
綜上所述,當m=2時,梯形面積有最大值8e 2,此時p點坐標為(2,e2
故答案為(2,e2
點評:本題考查函數(shù)的模型選擇和應用及過一點的切線的方程,本題解題的關鍵是求什么的最值就要先表示出函數(shù)式,根據(jù)函數(shù)的最值求法來求最值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

曲邊梯形由曲線y=ex,y=0,x=1,x=5所圍成,過曲線y=ex,x∈[1,5]上一點P作切線,使得此切線從曲邊梯形上切出一個面積最大的普通梯形,這時點P的坐標是
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲邊梯形由曲線y=ex,y=0,x=1,x=5所圍成,過曲線y=ex,x∈[1,5]上一點P作切線,使得此切線從曲邊梯形上切出一個面積最大的普通梯形,這時點P的坐標是______.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省南通市啟東中學高三考前輔導材料之小題強化篇1(解析版) 題型:解答題

曲邊梯形由曲線y=ex,y=0,x=1,x=5所圍成,過曲線y=ex,x∈[1,5]上一點P作切線,使得此切線從曲邊梯形上切出一個面積最大的普通梯形,這時點P的坐標是   

查看答案和解析>>

科目:高中數(shù)學 來源:2009年江蘇省南通市啟東中學高三5月考前輔導特訓數(shù)學試卷(理科)(解析版) 題型:解答題

曲邊梯形由曲線y=ex,y=0,x=1,x=5所圍成,過曲線y=ex,x∈[1,5]上一點P作切線,使得此切線從曲邊梯形上切出一個面積最大的普通梯形,這時點P的坐標是   

查看答案和解析>>

同步練習冊答案