設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且點(diǎn)(n,Sn)在函數(shù)y=x2+2x上,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知bn=2n-1,Tn=
1
a1b1
+
1
a2b2
+…+
1
anbn
,求Tn
分析:(1)由題意可得,Sn=n2+2n,由a1=S1,n≥2時(shí),an=Sn-Sn-1可求通項(xiàng)
(2)由
1
anbn
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,考慮利用裂項(xiàng)求和即可求解
解答:解:(1)由題意可得,Sn=n2+2n
當(dāng)n=1時(shí),a1=S1=3
當(dāng)n≥2時(shí),an=Sn-Sn-1=n2+2n-(n-1)2-2(n-1)=2n+1
而a1=3適合上式
∴an=2n+1
(2)∵bn=2n-1
1
anbn
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

∴Tn=
1
a1b1
+
1
a2b2
+…+
1
anbn

=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)

=
1
2
(1-
1
2n+1
)
=
n
2n+1
點(diǎn)評(píng):本題主要考查了利用數(shù)列的遞推公式,a1=S1,當(dāng)n≥2時(shí),an=Sn-Sn-1求解數(shù)列的通項(xiàng)公式,及數(shù)列的裂項(xiàng)求和方法的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

20、設(shè)Sn是數(shù)列{an}(n∈N*)的前n項(xiàng)和,a1=a,且Sn2=3n2an+Sn-12,an≠0,n=2,3,4,….
(1)證明數(shù)列{an+2-an}(n≥2)是常數(shù)數(shù)列;
(2)試找出一個(gè)奇數(shù)a,使以18為首項(xiàng),7為公比的等比數(shù)列{bn}(n∈N*)中的所有項(xiàng)都是數(shù)列{an}中的項(xiàng),并指出bn是數(shù)列{an}中的第幾項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,a3=-5,a6=1,此數(shù)列的通項(xiàng)公式為
 
,設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,則S8等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}與{bn}滿足關(guān)系,a1=2a,an+1=
1
2
(an+
a2
an
),bn=
an+a
an-a
(n∈N+,a>0)
(l)求證:數(shù)列{log3bn}是等比數(shù)列;
(2)設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,當(dāng)n≥2時(shí),Sn與(n+
4
3
)a
是否有確定的大小關(guān)系?若有,請(qǐng)加以證明,若沒有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn是數(shù)列{an} 的前n項(xiàng)和,若
S2nSn
(n∈N*)
是非零常數(shù),則稱數(shù)列{an} 為“和等比數(shù)列”.
(1)若數(shù)列{2bn}是首項(xiàng)為2,公比為4的等比數(shù)列,則數(shù)列 {bn}
 
(填“是”或“不是”)“和等比數(shù)列”;
(2)若數(shù)列{cn}是首項(xiàng)為c1,公差為d(d≠0)的等差數(shù)列,且數(shù)列 {cn} 是“和等比數(shù)列”,則d與c1之間滿足的關(guān)系為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案