【題目】在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,若問題中的三角形存在,求的值;若問題中的三角形不存在,說明理由.

問題:是否存在,它的內(nèi)角的對(duì)邊分別為,且,,________?

注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.

【答案】詳見解析

【解析】

解法一:由題意結(jié)合所給的條件,利用正弦定理角化邊,得到a,b的比例關(guān)系,根據(jù)比例關(guān)系,設(shè)出長度長度,由余弦定理得到的長度,根據(jù)選擇的條件進(jìn)行分析判斷和求解.

解法二:利用誘導(dǎo)公式和兩角和的三角函數(shù)公式求得的值,得到角的值,然后根據(jù)選擇的條件進(jìn)行分析判斷和求解.

解法一:

可得:,

不妨設(shè)

則:,即.

選擇條件①的解析:

據(jù)此可得:,,此時(shí).

選擇條件②的解析:

據(jù)此可得:,

則:,此時(shí):,則:.

選擇條件③的解析:

可得,

與條件矛盾,則問題中的三角形不存在.

解法二:∵,

,

,

,∴,∴,∴,

若選①,,∵,∴,∴c=1;

若選②,,則,;

若選③,與條件矛盾.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)調(diào)查某城市80名有子女在讀小學(xué)的成年人,以研究晚上八點(diǎn)至十點(diǎn)時(shí)間段輔導(dǎo)子女作業(yè)與性別的關(guān)系,得到下面的數(shù)據(jù)表:

    是否輔導(dǎo)

性別

輔導(dǎo)

不輔導(dǎo)

合計(jì)

25

60

合計(jì)

40

80

1)請(qǐng)將表中數(shù)據(jù)補(bǔ)充完整;

2)用樣本的頻率估計(jì)總體的概率,估計(jì)這個(gè)城市有子女在讀小學(xué)的成人女性晚上八點(diǎn)至十點(diǎn)輔導(dǎo)子女作業(yè)的概率;

3)根據(jù)以上數(shù)據(jù),能否有99%以上的把握認(rèn)為“晚上八點(diǎn)至十點(diǎn)時(shí)間段是否輔導(dǎo)子女作業(yè)與性別有關(guān)?”.

參考公式:,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】軸正半軸上的動(dòng)點(diǎn)作曲線的切線,切點(diǎn)為,,線段的中點(diǎn)為,設(shè)曲線軸的交點(diǎn)為

1)求的大小及的軌跡方程;

2)當(dāng)動(dòng)點(diǎn)到直線的距離最小時(shí),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為確定數(shù)學(xué)成績與玩手機(jī)之間的關(guān)系,從全校隨機(jī)抽樣調(diào)查了40名同學(xué),其中40%的人玩手機(jī).這40位同學(xué)的數(shù)學(xué)分?jǐn)?shù)(百分制)的莖葉圖如圖所示.

數(shù)學(xué)成績不低于70分為良好,低于70分為一般.

1)根據(jù)以上資料完成下面的列聯(lián)表,并判斷有多大把握認(rèn)為數(shù)學(xué)成績良好與不玩手機(jī)有關(guān)系

良好

一般

總計(jì)

不玩手機(jī)

玩手機(jī)

總計(jì)

40

2)現(xiàn)將40名同學(xué)的數(shù)學(xué)成績分為如下5組:

,,,,.其頻率分布直方圖如圖所示.計(jì)算這40名同學(xué)數(shù)學(xué)成績的平均數(shù),由莖葉圖得到的真實(shí)值記為,由頻率分布直方圖得到的估計(jì)值記為(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),求的誤差值.

3)從這40名同學(xué)數(shù)學(xué)成績高于90分的7人中隨機(jī)選取2人介紹學(xué)習(xí)方法,求這2保不玩手機(jī)的人數(shù)的分布列和數(shù)學(xué)期望.

附:,這40名同學(xué)的數(shù)學(xué)成績總和為2998分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程。

已知曲線Ct為參數(shù)), C為參數(shù))。

1)化CC的方程為普通方程,并說明它們分別表示什么曲線;

2)若C上的點(diǎn)P對(duì)應(yīng)的參數(shù)為,QC上的動(dòng)點(diǎn),求中點(diǎn)到直線

t為參數(shù))距離的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】央視傳媒為了解央視舉辦的“朗讀者”節(jié)目的收視時(shí)間情況,隨機(jī)抽取了某市名觀眾進(jìn)行調(diào)查,其中有名男觀眾和名女觀眾,將這名觀眾收視時(shí)間編成如圖所示的莖葉圖(單位:分鐘),收視時(shí)間在分鐘以上(包括分鐘)的稱為“朗讀愛好者”,收視時(shí)間在分鐘以下(不包括分鐘)的稱為“非朗讀愛好者”.

(1)若采用分層抽樣的方法從“朗讀愛好者”和“非朗讀愛好者”中隨機(jī)抽取名,再從這名觀眾中任選名,求至少選到名“朗讀愛好者”的概率;

(2)若從收視時(shí)間在40分鐘以上(包括40分鐘)的所有觀眾中選出男、女觀眾各1名,求選出的這兩名觀眾時(shí)間相差5分鐘以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,為坐標(biāo)原點(diǎn),過點(diǎn)的直線交于兩點(diǎn).

1)若直線與圓相切,求直線的方程;

2)若直線軸的交點(diǎn)為,且,,試探究:是否為定值.若為定值,求出該定值,若不為定值,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是數(shù)列的前項(xiàng)和,對(duì)任意都有成立(其中是常數(shù)).

1)當(dāng)時(shí),求

2)當(dāng)時(shí),

①若,求數(shù)列的通項(xiàng)公式:

②設(shè)數(shù)列中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是數(shù)列,如果,試問:是否存在數(shù)列數(shù)列,使得對(duì)任意,都有,且,若存在,求數(shù)列的首項(xiàng)的所有取值構(gòu)成的集合;若不存在.說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

討論的單調(diào)性.

,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案