設函數(shù)g(x)= (a,b∈R),在其圖象上一點P(x,y)處的切線的斜率記為f(x).

   (1)若方程f(x)=0有兩個實根分別為一2和4,求f(x)的表達式;

   (2)若g(x)在區(qū)間[一1,3]上是單調遞減函數(shù),求a2+b2的最小值.

(1)f(x)= x2-2x-8(2)13


解析:

(1)根據(jù)導數(shù)的幾何意義知f(x)=g′(x)=x2+ax-b

    由已知一2、4是方程x2+ax-b =0的兩個實根-

由韋達定理,,∴,f(x)= x2-2x-8

   (2)g(x)在區(qū)間【-1.3】上是單調遞減函數(shù),所以在【-1,3】區(qū)間上恒有

f(x)=g’(x)=x2+ax-b≤0,即f(x)=g’(x)=x2+ax-b≤0在【-1,3】恒成立,

    這只需要滿足即可,也即

而a2+b2可以視為平面區(qū)域內的點到原點距離的平方,其中點(-2,3)距離原點最近,所以當時,a2+b2有最小值13

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若x1、x2(x1≠x2)是函數(shù)f(x)=ax3+bx2-a2x(a>0)的兩個極值點.
(Ⅰ)若x1=-
1
3
,x2=1
,求函數(shù)f(x)的解析式;
(Ⅱ)若|x1|+|x2|=2
3
,求b的最大值;
(Ⅲ)若-
1
3
為函數(shù)f(x)的一個極值點,設函數(shù)g(x)=f′(x)-ax-
1
3
a
,當x∈[-
1
3
,a]
時求|g(x)|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b是方程4x2-4kx-1=0(k∈R)的兩個不等實根,函數(shù)f(x)=
2x-k
x2+1
的定義域為[a,b].
(1)當k=0時,求函數(shù)f(x)的值域;
(2)證明:函數(shù)f(x)在其定義域[a,b]上是增函數(shù);
(3)在(1)的條件下,設函數(shù)g(x)=x3-3m2x+
3
5
 
(-
1
2
≤x≤
1
2
, 0<m<
1
2
)
,若對任意的x1∈[-
1
2
,
1
2
]
,總存在x2∈[-
1
2
,
1
2
]
,使得f(x2)=g(x1)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知函數(shù)f(x)=
1
2
(1+x)2-ln(1+x)

(1)求f(x)的單調區(qū)間;
(2)若x∈[
1
e
-1,e-1]
時,f(x)<m恒成立,求m的取值范圍;
(3)若設函數(shù)g(x)=
1
2
x2+
1
2
x+a
,若g(x)的圖象與f(x)的圖象在區(qū)間[0,2]上有兩個交點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3-3ax,g(x)=bx2+clnx,且g(x)在點(1,g(1))處的切線方程為2y-1=0.
(1)求g(x)的解析式;
(2)求函數(shù)F(x)=f(x)+g(x)的單調遞增區(qū)間;
(3)設函數(shù)G(x)=
f(x),x≤0
g(x),x>0
,若方程G(x)=a2有且僅有四個解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
2x
x2+1
的定義域為[-
1
2
,
1
2
]

(1)求函數(shù)f(x)的值域;
(2)設函數(shù)g(x)=x3-3ax+
7
8
(-
1
2
≤x≤
1
2
,且a≥
1
4
)
.若對于任意x1[-
1
2
,
1
2
]
,總存在x2[-
1
2
,
1
2
]
,使得g(x2)=f(x1)成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案