在等差數(shù)列中,,其前項(xiàng)和為,等比數(shù)列的各項(xiàng)均為正數(shù),,公比為,且,
(Ⅰ)求;
(Ⅱ)證明:
(Ⅰ)  ,
(Ⅱ)由,

求得
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003318467297.png" style="vertical-align:middle;" />≥,所以,于是,
得出

試題分析:(Ⅰ)設(shè)的公差為,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240033189041080.png" style="vertical-align:middle;" />所以          3分
解得 (舍),
  ,.           6分
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003318670850.png" style="vertical-align:middle;" />,
所以.         9分

                         11分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003318467297.png" style="vertical-align:middle;" />≥,所以,于是,
所以
              13分
點(diǎn)評:中檔題,本題具有較強(qiáng)的綜合性,本解答從確定通項(xiàng)公式入手,從而求得了,進(jìn)一步轉(zhuǎn)化成數(shù)列求和問題,利用“裂項(xiàng)相消法”化簡,達(dá)到證明不等式的目的。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分12分)已知點(diǎn)Pn(an,bn)滿足an+1=an·bn+1,bn+1 (n∈N*)且點(diǎn)P1的坐標(biāo)為(1,-1).(1)求過點(diǎn)P1,P2的直線l的方程;
(2)試用數(shù)學(xué)歸納法證明:對于n∈N*,點(diǎn)Pn都在(1)中的直線l上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分13分)已知各項(xiàng)均為正數(shù)的數(shù)列是數(shù)列的前n項(xiàng)和,對任意,有2Sn=2
(Ⅰ)求常數(shù)p的值; 
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)記,()若數(shù)列從第二項(xiàng)起每一項(xiàng)都比它的前一項(xiàng)大,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)  
已知數(shù)列的各項(xiàng)排成如圖所示的三角形數(shù)陣,數(shù)陣中每一行的第一個(gè)數(shù)構(gòu)成等差數(shù)列,的前n項(xiàng)和,且

( I )若數(shù)陣中從第三行開始每行中的數(shù)按從左到右的順序均構(gòu)成公比為正數(shù)的等比數(shù)列,且公比相等,已知,求的值;
(Ⅱ)設(shè),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列的前n項(xiàng)和為為等比數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前n項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知正項(xiàng)數(shù)列{}中,al=1,a2=2,2222 (n≥2),則a6等于
A.16B.8C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
公差不為零的等差數(shù)列中,,且、、 成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)設(shè)數(shù)列的前項(xiàng)和為.已知,,
(Ⅰ)設(shè),求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a5=5,S5=15,則數(shù)列的前100項(xiàng)和為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案