【題目】已知直線l:x﹣y=1與圓Γ:x2+y2﹣2x+2y﹣1=0相交于A,C兩點,點B,D分別在圓Γ上運動,且位于直線l的兩側,則四邊形ABCD面積的最大值為( )
A.
B.
C.
D.
科目:高中數學 來源: 題型:
【題目】一種藥在病人血液中的含量不低于2克時,它才能起到有效治療的作用,已知每服用且克的藥劑,藥劑在血液中的含量克隨著時間小時變化的函數關系式近似為,其中.
若病人一次服用9克的藥劑,則有效治療時間可達多少小時?
若病人第一次服用6克的藥劑,6個小時后再服用3m克的藥劑,要使接下來的2小時中能夠持續(xù)有效治療,試求m的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+x﹣ln(x+a)+3b在x=0處取得極值0. (Ⅰ)求實數a,b的值;
(Ⅱ)若關于x的方程f(x)= x+m在區(qū)間[0,2]上恰有兩個不同的實數根,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =( sin ,1), =(cos ,cos2 ). (Ⅰ)若 =1,求cos( ﹣x)的值;
(Ⅱ)記f(x)= ,在△ABC中,A、B、C的對邊分別為a、b、c,且滿足(2a﹣c)cosB=bcosC,求函數f(A)的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區(qū)2011年至2017年農村居民家庭人均純收入y(單位:千元)的數據如下表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求樣本中心點坐標;
(2)已知兩變量線性相關,求y關于t的線性回歸方程;
(3)利用(2)中的線性回歸方程,分析2011年至2017年該地區(qū)農村居民家庭人均純收入的變化情況,并預測該地區(qū)2019年農村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知不等式|x+3|<2x+1的解集為{x|x>m}. (Ⅰ)求m的值;
(Ⅱ)設關于x的方程|x﹣t|+|x+ |=m(t≠0)有解,求實數t的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com