【題目】“開門大吉”是中央電視臺推出的娛樂節(jié)目.選手面對1~8號8扇大門,依次按響門上的門鈴,門鈴會播放一段音樂的單音色旋律,選手需正確回答出這首歌的名字,方可獲得該扇門對應(yīng)的家庭夢想基金.在一次場外調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個年齡段:20~30;30~40(單位:歲),其猜對歌曲名稱與否的人數(shù)如圖所示.

(Ⅰ) 完成下列2×2列聯(lián)表;

正誤

年齡

正確

錯誤

合計

20~30

30

30~40

70

合計

120

(Ⅱ)判斷是否有90%的把握認(rèn)為猜對歌曲名稱與否和年齡有關(guān);說明你的理由.(下面的臨界值表供參考)

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

【答案】(1)見解析(2)有把握

【解析】分析:(1)根據(jù)所給的二維條形圖的性質(zhì)可得到列聯(lián)表;(2)根據(jù)列聯(lián)表,利用公式求出,從而可得出結(jié)論.

詳解(1)

年齡/正誤

正確

錯誤

合計

20~30

10

40

30~40

10

80

合計

20

100

(Ⅱ)

的把握認(rèn)為猜對歌曲名稱與否和年齡有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)復(fù)數(shù)z=2m+(4-m2)i,當(dāng)實數(shù)m取何值時,復(fù)數(shù)z對應(yīng)的點:

(1)位于虛軸上?

(2)位于一、三象限

(3)位于以原點為圓心,以4為半徑的圓上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線,曲線 .以極點為坐標(biāo)原點,極軸為軸正半軸建立直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)).

(1)求的直角坐標(biāo)方程;

(2),交于不同四點,這四點在上的排列順次為,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面中兩條直線相交于點O,對于平面上任意一點M,若x,y分別是M到直線的距離,則稱有序非負(fù)實數(shù)對(x,y)是點M的“距離坐標(biāo)”.已知常數(shù)p≥0,q≥0,給出下列三個命題:

①若p=q=0,則“距離坐標(biāo)”為(0,0)的點有且只有1個;

②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(pq的點有且只有2個;

③若pq≠0則“距離坐標(biāo)”為p,q的點有且只有4個.

上述命題中,正確命題的是______.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)在中,內(nèi)角,的對邊分別為,,且,證明:;

(2)已知結(jié)論:在直角三角形中,若兩直角邊長分別為,斜邊長為,則斜邊上的高.若把該結(jié)論推廣到空間:在側(cè)棱互相垂直的四面體中,若三個側(cè)面的面積分別為,,,底面面積為,則該四面體的高,,之間的關(guān)系是什么?(用,,表示

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校對校園進行綠化,移栽香樟和桂花兩種大樹各2株,若香樟的成活率為,桂花的成活率為,假設(shè)每棵樹成活與否是相互獨立的.求:

Ⅰ)兩種樹各成活一株的概率;

Ⅱ)設(shè)ξ表示兩種樹成活的總株數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀右面的程序框圖,運行相應(yīng)的程序,若輸入N的值為24,則輸出N的值為( 。

A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,為使輸出S的值小于91,則輸入的正整數(shù)N的最小值為( )

A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過原點的動直線l與圓相交于不同的兩點A,B.

(1)求線段AB的中點M的軌跡C的方程;

(2)是否存在實數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案