為了解某班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:
喜愛(ài)打籃球 不喜愛(ài)打籃球 合計(jì)
男生 5
女生 10
合計(jì) 50
已知在全部50人中隨機(jī)抽取1人抽到喜愛(ài)打籃球的學(xué)生的概率為
3
5

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為喜愛(ài)打籃球與性別有關(guān)?說(shuō)明你的理由;
(3)已知喜愛(ài)打籃球的10位女生中,A1,A2,A3還喜歡打羽毛球,B1,B2還喜歡打乒乓球,C1,C2還喜歡踢足球,現(xiàn)再?gòu)南矚g打羽毛球、喜歡打乒乓球、喜歡踢足球的女生中各選出1名進(jìn)行其他方面的調(diào)查,求B1和C1不全被選中的概率.
下面的臨界值表供參考:
p(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:綜合題,概率與統(tǒng)計(jì)
分析:(1)根據(jù)在全部50人中隨機(jī)抽取1人抽到喜愛(ài)打籃球的學(xué)生的概率為
3
5
,可得喜愛(ài)打籃球的學(xué)生,即可得到列聯(lián)表;
(2)利用公式求得K2,與臨界值比較,即可得到結(jié)論;
(3)利用列舉法確定基本事件的個(gè)數(shù),結(jié)合對(duì)立事件的概率公式,即可求B1和C1不全被選中的概率.
解答: 解:(1)根據(jù)在全部50人中隨機(jī)抽取1人抽到喜愛(ài)打籃球的學(xué)生的概率為
3
5
,可得喜愛(ài)打籃球的學(xué)生為30人,故可得列聯(lián)表補(bǔ)充如下:-----------------------------------------------------(4分)
喜愛(ài)打籃球 不喜愛(ài)打籃球 合計(jì)
男生 20 5 25
女生 10 15 25
合計(jì) 30 20 50
(2)∵K2=
50×(20×15-10×5)2
30×20×25×25
=
25
3
≈8.333>7.879
--------------------(8分)
∴有99.5%的把握認(rèn)為喜愛(ài)打籃球與性別有關(guān).------------------------------------------(9分)
(3)從10位女生中選出喜歡打羽毛球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結(jié)果組成的基本事件如下:(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2)基本事件的總數(shù)為12,---------------------------(11分)
用M表示“B1,C1不全被選中”這一事件,則其對(duì)立事件
.
M
表示“B1,C1全被選中”這一事件,由于
.
M
由(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)共3個(gè)基本事件組成,
所以P(
.
M
)=
3
12
=
1
4
,---------------------------------------------------(13分)
由對(duì)立事件的概率公式得P(M)=1-P(
.
M
)=1-
1
4
=
3
4
.------------------(14分)
點(diǎn)評(píng):本題考查獨(dú)立性檢驗(yàn)知識(shí)與概率的計(jì)算,考查學(xué)生的計(jì)算能力,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)A(a,b)(其中a≠b)在矩陣M=
cos α-sin α
sin αcos α
 對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-b,a),
(Ⅰ)求矩陣M的逆矩陣;
(Ⅱ)求曲線C:x2+y2=1在矩陣N=
0
1
2
10
所對(duì)應(yīng)變換的作用下得到的新的曲線C′的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明:
1
n+1
+
1
n+2
+…+
1
3n+1
25
24
.(n=1,2,3…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|log2(4x)•log4
4
x2
≥2},g(x)=
4x
4x+1

(Ⅰ)求出集合A;
(Ⅱ)判斷g(x)的單調(diào)性,并用單調(diào)性的定義證明;
(Ⅲ)當(dāng)λ為何值時(shí),方程g(x)=λ在x∈A上有實(shí)數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=(a2-4)+(a+2)i(a∈R)
(Ⅰ)若z為純虛數(shù),求實(shí)數(shù)a的值;
(Ⅱ)若z在復(fù)平面上對(duì)應(yīng)的點(diǎn)在直線x+2y+1=0上,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:“復(fù)數(shù)z=(λ2-1)+(λ2-2λ-3)i,(λ∈R)是實(shí)數(shù)”,命題q:“在復(fù)平面C內(nèi),復(fù)數(shù)z=λ+(λ2+λ-6)i,(λ∈R)所對(duì)應(yīng)的點(diǎn)在第三象限”.
(1)若命題p是真命題,求λ的值;
(2)若“¬p∧q”是真命題,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線y=kx+b與曲線x2+4y2-4=0交于A、B兩點(diǎn),記△AOB的面積為S(O是坐標(biāo)原點(diǎn)).
(1)求曲線的離心率;
(2)求在k=0,0<b<1的條件下,S的最大值;
(3)當(dāng)|AB|=2,S=1時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
=(x,1),
b
=(2,-1).
(1)若
a
b
,求x的值;
(2)若
a
b
的夾角為鈍角,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A=
21
53
,x=
x
y
,B=
4
11
,且AX=B.
(1)求A-1;
(2)求X.

查看答案和解析>>

同步練習(xí)冊(cè)答案