如圖,四棱錐S-ABCD中,底面ABCD為平行四邊形,E是SA上一點(diǎn),試探求點(diǎn)E的位置,使SC平面EBD,并證明.
答:點(diǎn)E的位置是棱SA的中點(diǎn).
證明:取SA的中點(diǎn)E,連接EB,ED,AC,
設(shè)AC與BD的交點(diǎn)為O,連接EO.
∵四邊形ABCD是平行四邊形,
∴點(diǎn)O是AC的中點(diǎn).
又E是SA的中點(diǎn),∴OE是△SAC的中位線.
∴OESC.
∵SC?平面EBD,OE?平面EBD,
∴SC平面EBD.
故E的位置為棱SA的中點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

直三棱柱ABC-A1B1C1中,∠ACB=120°,AC=CB=A1A=1,D1是A1B1上一動(dòng)點(diǎn)(可以與A1或B1重合),過(guò)D1和C1C的平面與AB交于D.
(Ⅰ)證明BC平面AB1C1
(Ⅱ)若D1為A1B1的中點(diǎn),求三棱錐B1-C1AD1的體積VB1-C1AD1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在正方體ABCD-A1B1C1D1中,E是AA1的中點(diǎn).
(1)求CAl與底面ABCD所成角的正切值;
(2)證明A1C平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖是一個(gè)長(zhǎng)方體截去一個(gè)角所得的多面體的直觀圖及它的正(主)視圖和側(cè)(左)視圖(單位:cm).
(1)畫(huà)出該多面體的俯視圖;
(2)按照給出的尺寸,求該多面體的體積;
(3)在所給直觀圖中連接BC',證明:BC'平面EFG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC=CA=
3
,AD=CD=1.
(1)求證:BD⊥AA1
(2)在棱BC上取一點(diǎn)E,使得AE平面DCC1D1,求
BE
EC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,四邊形ABCD是平行四邊形,E、F分別為PA、BC的中點(diǎn).
求證:EF平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知在側(cè)棱垂直于底面三棱柱ABC-A1B1C1中,AC=3,AB=5,cos∠CAB=
3
5
,AA1=4,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC⊥BC1
(2)求證:AC1平面CDB1
(3)求三棱錐A1-B1CD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DCAB,∠BAD=90°,且AB=2AD=2DC=2PD=4(單位:cm),E為PA的中點(diǎn).
(1)證明:DE平面PBC;
(2)證明:DE⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知四邊形ABCD中,∠B=∠D=90°,AD=CD=
6
,∠BAC=60°,E為AC的中點(diǎn);現(xiàn)將△ACD沿對(duì)角線AC折起,使點(diǎn)D在平面ABC上的射影H落在BC上.
(1)求證:AB⊥平面BCD;
(2)求三棱錐D-ABE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案