【題目】設(shè)函數(shù)f(x)= ,則滿足f(x)+f(x﹣ )>1的x的取值范圍是
【答案】x>
【解析】解:若x≤0,則x﹣ ≤﹣ ,
則f(x)+f(x﹣ )>1等價(jià)為x+1+x﹣ +1>1,即2x>﹣ ,則x> ,
此時(shí) <x≤0,
當(dāng)x>0時(shí),f(x)=2x>1,x﹣ >﹣ ,
當(dāng)x﹣ >0即x> 時(shí),滿足f(x)+f(x﹣ )>1恒成立,
當(dāng)0≥x﹣ >﹣ ,即 ≥x>0時(shí),f(x﹣ )=x﹣ +1=x+ ,
此時(shí)f(x)+f(x﹣ )>1恒成立,
綜上x> ,
所以答案是:x>
【考點(diǎn)精析】掌握函數(shù)的值是解答本題的根本,需要知道函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ2﹣2ρcosθ﹣4=0
(1)若直線l與曲線C沒(méi)有公共點(diǎn),求m的取值范圍;
(2)若m=0,求直線l被曲線C截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax2(a∈R)
(Ⅰ) 討論f(x)的單調(diào)性;
(Ⅱ) 若對(duì)于x∈(0,+∞),f(x)≤a﹣1恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三次函數(shù)f(x)=x3+bx2+cx+d(a,b,c∈R)過(guò)點(diǎn)(3,0),且函數(shù)f(x)在點(diǎn)(0,f(0))處的切線恰好是直線y=0.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=9x+m﹣1,若函數(shù)y=f(x)﹣g(x)在區(qū)間[﹣2,1]上有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=cos(x+ ),則下列結(jié)論錯(cuò)誤的是( )
A.f(x)的一個(gè)周期為﹣2π
B.y=f(x)的圖象關(guān)于直線x= 對(duì)稱
C.f(x+π)的一個(gè)零點(diǎn)為x=
D.f(x)在( ,π)單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某零售店近5個(gè)月的銷售額和利潤(rùn)額資料如下表:
商店名稱 | |||||
銷售額/千萬(wàn)元 | 3 | 5 | 6 | 7 | 9 |
利潤(rùn)額/百萬(wàn)元 | 2 | 3 | 3 | 4 | 5 |
(1)畫出散點(diǎn)圖.觀察散點(diǎn)圖,說(shuō)明兩個(gè)變量有怎樣的相關(guān)關(guān)系;
(2)用最小二乘法計(jì)算利潤(rùn)額關(guān)于銷售額的回歸直線方程;
(3)當(dāng)銷售額為4千萬(wàn)元時(shí),利用(2)的結(jié)論估計(jì)該零售店的利潤(rùn)額(百萬(wàn)元).
[參考公式:,]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 , : , : .
(1)若 是 的充分條件,求實(shí)數(shù) 的取值范圍;
(2)若 ,“”為真命題,“”為假命題,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)中,圓,圓。
(Ⅰ)在以O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,分別寫出圓的極坐標(biāo)方程,并求出圓的交點(diǎn)坐標(biāo)(用極坐標(biāo)表示);
(Ⅱ)求圓的公共弦的參數(shù)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)拋物線C:y2=2px(p>0)的焦點(diǎn)F的直線交拋物線于A,B兩點(diǎn),且A,B兩點(diǎn)的縱坐標(biāo)之積為﹣4.
(1)求拋物線C的方程;
(2)已知點(diǎn)D的坐標(biāo)為(4,0),若過(guò)D和B兩點(diǎn)的直線交拋物線C的準(zhǔn)線于P點(diǎn),求證:直線AP與x軸交于一定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com