從n(,且n≥2)人中選兩人排A,B兩個位置,若其中A位置不排甲的排法數(shù)為25,則n=(    )

A. 3                B. 4                C. 5                    D. 6

 

【答案】

D

【解析】

試題分析:從n(,且n≥2)人中選兩人排A,B兩個位置,其中A位置不排甲的排法為分兩類,一是不排甲,有種方法,二是將甲排在位置B,再從其余n-1人中選一個排在位置A,有n-1種方法,所以,有+ n-1=25,即,

解得,n=6,n=4(舍去),選D。

考點:簡單的排列應用問題

點評:簡單題,有條件的排列問題,應注意從特殊元素及特殊位置優(yōu)先考慮。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

從n(n∈N*,且n≥2)人中選兩人排A,B兩個位置,若其中A位置不排甲的排法數(shù)為25,則n=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個口袋中裝有大小相同的n個紅球(n≥5且n∈N)和5個白球,一次摸獎從中摸兩個球,兩個球的顏色不同則為中獎.
(I)試用n表示一次摸獎中獎的概率p;
(II)記從口袋中三次摸獎(每次摸獎后放回)恰有一次中獎的概率為m,用p表示恰有一次中獎的概率m,求m的最大值及m取最大值時p、n的值;
(III)當n=15時,將15個紅球全部取出,全部作如下標記:記上i號的有i個(i=1,2,3,4),共余的紅球記上0號.并將標號的15個紅球放人另一袋中,現(xiàn)從15個紅球的袋中任取一球,ξ表示所取球的標號,求ξ的分布列、期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一個口袋中裝有大小相同的n個紅球(n≥5且n∈N)和5個白球,一次摸獎從中摸兩個球,兩個球的顏色不同則為中獎.
(I)試用n表示一次摸獎中獎的概率p;
(II)記從口袋中三次摸獎(每次摸獎后放回)恰有一次中獎的概率為m,用p表示恰有一次中獎的概率m,求m的最大值及m取最大值時p、n的值;
(III)當n=15時,將15個紅球全部取出,全部作如下標記:記上i號的有i個(i=1,2,3,4),共余的紅球記上0號.并將標號的15個紅球放人另一袋中,現(xiàn)從15個紅球的袋中任取一球,ξ表示所取球的標號,求ξ的分布列、期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省皖南八校高三(上)9月聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題

一個口袋中裝有大小相同的n個紅球(n≥5且n∈N)和5個白球,一次摸獎從中摸兩個球,兩個球的顏色不同則為中獎.
(I)試用n表示一次摸獎中獎的概率p;
(II)記從口袋中三次摸獎(每次摸獎后放回)恰有一次中獎的概率為m,用p表示恰有一次中獎的概率m,求m的最大值及m取最大值時p、n的值;
(III)當n=15時,將15個紅球全部取出,全部作如下標記:記上i號的有i個(i=1,2,3,4),共余的紅球記上0號.并將標號的15個紅球放人另一袋中,現(xiàn)從15個紅球的袋中任取一球,ξ表示所取球的標號,求ξ的分布列、期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省皖南八校高三(上)9月聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題

一個口袋中裝有大小相同的n個紅球(n≥5且n∈N)和5個白球,一次摸獎從中摸兩個球,兩個球的顏色不同則為中獎.
(I)試用n表示一次摸獎中獎的概率p;
(II)記從口袋中三次摸獎(每次摸獎后放回)恰有一次中獎的概率為m,用p表示恰有一次中獎的概率m,求m的最大值及m取最大值時p、n的值;
(III)當n=15時,將15個紅球全部取出,全部作如下標記:記上i號的有i個(i=1,2,3,4),共余的紅球記上0號.并將標號的15個紅球放人另一袋中,現(xiàn)從15個紅球的袋中任取一球,ξ表示所取球的標號,求ξ的分布列、期望和方差.

查看答案和解析>>

同步練習冊答案