【題目】某公司準(zhǔn)備設(shè)計(jì)一個(gè)精美的心形巧克力盒子,它是由半圓、半圓和正方形ABCD組成的,且.設(shè)計(jì)人員想在心形盒子表面上設(shè)計(jì)一個(gè)矩形的標(biāo)簽EFGH,標(biāo)簽的其中兩個(gè)頂點(diǎn)E,FAM上,另外兩個(gè)頂點(diǎn)GHCN上(M,N分別是AB,CB的中點(diǎn)).設(shè)EF的中點(diǎn)為P,矩形EFGH的面積為

1)寫出S關(guān)于的函數(shù)關(guān)系式

2)當(dāng)為何值時(shí)矩形EFGH的面積最大?

【答案】1;(2)當(dāng)時(shí),矩形EFGH的面積最大,為

【解析】

1)由題意知,可得,利用矩形的面積公式,即可得答案;

2)利用導(dǎo)數(shù)可得:當(dāng)時(shí),恒成立,所以上單調(diào)遞增,即可得答案;

1)由題意知,,

,

2

因?yàn)?/span>,所以,,所以,

故當(dāng)時(shí),恒成立,所以上單調(diào)遞增.

故當(dāng)時(shí),

答:當(dāng)時(shí),矩形EFGH的面積最大,為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若上是減函數(shù),求實(shí)數(shù)的最大值;

2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線,不與軸垂直的直線與雙曲線右支交于點(diǎn),,(軸上方,軸下方),與雙曲線漸近線交于點(diǎn),軸上方),為坐標(biāo)原點(diǎn),下列選項(xiàng)中正確的為(

A.恒成立

B.,則

C.面積的最小值為1

D.對(duì)每一個(gè)確定的,若,則的面積為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)唐代天文學(xué)家、數(shù)學(xué)家張逐曾以李白喝酒為題編寫了如下一道題:李白街上走,提壺去買酒,遇店加一倍,見花喝一斗(計(jì)量單位),三遇店和花,喝光壺中酒.問最后一次遇花時(shí)有酒________斗,原有酒________斗.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的短軸長(zhǎng)為2,離心率為

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)若直線l與橢圓E相切于點(diǎn)P(點(diǎn)P在第一象限內(nèi)),與圓相交于點(diǎn)A,B,且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與橢圓交于兩點(diǎn),且(其中為坐標(biāo)原點(diǎn)),若橢圓的離心率滿足,則橢圓長(zhǎng)軸的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】30屆夏季奧運(yùn)會(huì)將于2012727日在倫敦舉行,當(dāng)?shù)啬硨W(xué)校招募了8名男志愿者和12名女志愿者.將這20名志愿者的身高編成如下莖葉圖(單位:cm):若身高在180cm以上(包括180cm)定義為高個(gè)子,身高在180cm以下(不包括180cm)定義為非高個(gè)子”,且只有女高個(gè)子才能擔(dān)任禮儀小姐

I)如果用分層抽樣的方法從高個(gè)子非高個(gè)子中抽取5人,再?gòu)倪@5人中選2人,那么至少有一人是高個(gè)子的概率是多少?

)若從所有高個(gè)子中選3名志愿者,用X表示所選志愿者中能擔(dān)任禮儀小姐的人數(shù),試寫出X的分布列,并求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,過拋物線的焦點(diǎn)且與軸垂直的直線與拋物線在第一象限交于點(diǎn)的面積為,其中為坐標(biāo)原點(diǎn).

1)求拋物線的標(biāo)準(zhǔn)方程;

2)若,,為拋物線上的兩個(gè)不同的點(diǎn),直線,的斜率分別為,且,求點(diǎn)到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),離心率為.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)過橢圓C的右焦點(diǎn)F作直線l交橢圓CA、B兩點(diǎn),交y軸于M點(diǎn),若,,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案