【題目】某公司準(zhǔn)備設(shè)計(jì)一個(gè)精美的心形巧克力盒子,它是由半圓、半圓和正方形ABCD組成的,且.設(shè)計(jì)人員想在心形盒子表面上設(shè)計(jì)一個(gè)矩形的標(biāo)簽EFGH,標(biāo)簽的其中兩個(gè)頂點(diǎn)E,F在AM上,另外兩個(gè)頂點(diǎn)G,H在CN上(M,N分別是AB,CB的中點(diǎn)).設(shè)EF的中點(diǎn)為P,,矩形EFGH的面積為.
(1)寫出S關(guān)于的函數(shù)關(guān)系式
(2)當(dāng)為何值時(shí)矩形EFGH的面積最大?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線,不與軸垂直的直線與雙曲線右支交于點(diǎn),,(在軸上方,在軸下方),與雙曲線漸近線交于點(diǎn),(在軸上方),為坐標(biāo)原點(diǎn),下列選項(xiàng)中正確的為( )
A.恒成立
B.若,則
C.面積的最小值為1
D.對(duì)每一個(gè)確定的,若,則的面積為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)唐代天文學(xué)家、數(shù)學(xué)家張逐曾以“李白喝酒”為題編寫了如下一道題:“李白街上走,提壺去買酒,遇店加一倍,見花喝一斗(計(jì)量單位),三遇店和花,喝光壺中酒.”問最后一次遇花時(shí)有酒________斗,原有酒________斗.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的短軸長(zhǎng)為2,離心率為.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若直線l與橢圓E相切于點(diǎn)P(點(diǎn)P在第一象限內(nèi)),與圓相交于點(diǎn)A,B,且,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與橢圓交于兩點(diǎn),且(其中為坐標(biāo)原點(diǎn)),若橢圓的離心率滿足,則橢圓長(zhǎng)軸的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第30屆夏季奧運(yùn)會(huì)將于2012年7月27日在倫敦舉行,當(dāng)?shù)啬硨W(xué)校招募了8名男志愿者和12名女志愿者.將這20名志愿者的身高編成如下莖葉圖(單位:cm):若身高在180cm以上(包括180cm)定義為“高個(gè)子”,身高在180cm以下(不包括180cm)定義為“非高個(gè)子”,且只有“女高個(gè)子”才能擔(dān)任“禮儀小姐”.
(I)如果用分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中抽取5人,再?gòu)倪@5人中選2人,那么至少有一人是“高個(gè)子”的概率是多少?
(Ⅱ)若從所有“高個(gè)子”中選3名志愿者,用X表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫出X的分布列,并求X的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,過拋物線的焦點(diǎn)且與軸垂直的直線與拋物線在第一象限交于點(diǎn),的面積為,其中為坐標(biāo)原點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若,,為拋物線上的兩個(gè)不同的點(diǎn),直線,的斜率分別為,,且,求點(diǎn)到直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),離心率為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過橢圓C的右焦點(diǎn)F作直線l交橢圓C于A、B兩點(diǎn),交y軸于M點(diǎn),若,,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com