【題目】如圖,已知多面體中,平面,平面,,,為的中點.
(1)求證:平面;
(2)求多面體的體積;
(3)求平面和平面所成的銳二面角的大。
【答案】(1)證明見解析;(2)(3).
【解析】
(1)取中點,根據(jù)已知,結(jié)合三角形中位線定理、平行四邊形的判定定理和性質(zhì)定理可以證明出,再根據(jù)線面垂直的性質(zhì)、線面垂直的判定定理,結(jié)合等邊三角形的性質(zhì)進行證明即可;
(2)利用多面體的體積是兩個三棱錐的體積之和,結(jié)合三棱錐的體積公式進行求解即可;
(3)建立空間直角坐標系,利用空間向量夾角公式進行求解即可.
(1)取中點,連接,
因此有且,
因為平面,平面,所以,由已知可知:,
所以且,
因此為平行四邊形,∴,
因為平面,平面,所以,
因為,所以三角形是等邊三角形,而是的中點,
所以,而,平面,
因此平面,∴平面;
(2)因為平面,平面,所以,
因此,因此有,
因為平面,平面,所以,
因此,
由平面,平面,所以,
因此,
由(1)知:,所以,連接,
;
(3)建立如下圖的所示的空間直角坐標系,
,
設(shè)平面的法向量為:,
,
因此有,
平面的法向量為:,
設(shè)平面和平面所成的銳二面角的大小為,
則有.
科目:高中數(shù)學 來源: 題型:
【題目】從集市上買回來的蔬菜仍存有殘留農(nóng)藥,食用時需要清洗數(shù)次,統(tǒng)計表中的表示清洗的次數(shù),表示清洗次后千克該蔬菜殘留的農(nóng)藥量(單位:微克).
x | 1 | 2 | 3 | 4 | 5 |
y | 4.5 | 2.2 | 1.4 | 1.3 | 0.6 |
(1)在如圖的坐標系中,描出散點圖,并根據(jù)散點圖判斷,與哪一個適宜作為清洗次后千克該蔬菜殘留的農(nóng)藥量的回歸方程類型;(給出判斷即可,不必說明理由)
(2)根據(jù)判斷及下面表格中的數(shù)據(jù),建立關(guān)于的回歸方程;
表中,.
3 | 2 | 0.12 | 10 | 0.09 | -8.7 | 0.9 |
(3)對所求的回歸方程進行殘差分析.
附:①線性回歸方程中系數(shù)計算公式分別為,;
②,說明模擬效果非常好;
③,,,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】原始的蚊香出現(xiàn)在宋代.根據(jù)宋代冒蘇軾之名編寫的《格物粗談》記載:“端午時,貯浮萍,陰干,加雄黃,作紙纏香,燒之,能祛蚊蟲.”如圖,為某校數(shù)學興趣小組用數(shù)學軟件制作的“螺旋蚊香”,畫法如下:在水平直線上取長度為1的線段,做一個等邊三角形,然后以點為圓心,為半徑逆時針畫圓弧,交線段的延長線于點,再以點為圓心,為半徑逆時針畫圓弧,交線段的延長線于點,以此類推,當?shù)玫降?/span>“螺旋蚊香”與直線恰有個交點時,“螺旋蚊香”的總長度的最小值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,P為直線:上的動點,動點Q滿足,且原點O在以為直徑的圓上.記動點Q的軌跡為曲線C
(1)求曲線C的方程:
(2)過點的直線與曲線C交于A,B兩點,點D(異于A,B)在C上,直線,分別與x軸交于點M,N,且,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若是函數(shù)的極值點,求a的值;
(2)令,若對任意,有恒成立,求a的取值范圍;
(3)設(shè)m,n為實數(shù),且,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國的西氣東輸工程把西部的資源優(yōu)勢變?yōu)榻?jīng)濟優(yōu)勢,實現(xiàn)了氣能源需求與供給的東西部銜接,工程建設(shè)也加快了西部及沿線地區(qū)的經(jīng)濟發(fā)展輸氣管道工程建設(shè)中,某段管道鋪設(shè)要經(jīng)過一處峽谷,峽谷內(nèi)恰好有一處直角拐角,水平橫向移動輸氣管經(jīng)過此拐角,從寬為米峽谷拐入寬為米的峽谷.如圖所示,位于峽谷懸崖壁上兩點、的連線恰好經(jīng)過拐角內(nèi)側(cè)頂點(點、、在同一水平面內(nèi)),設(shè)與較寬側(cè)峽谷懸崖壁所成角為,則的長為________(用表示)米.要使輸氣管順利通過拐角,其長度不能低于________米.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用數(shù)字0,1,2,3,4組成沒有重復數(shù)字且至少有兩個數(shù)字是偶數(shù)的四位數(shù),則這樣的四位數(shù)的個數(shù)為( )
A.64B.72C.96D.144
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x-a|+|2x-1|(a∈R).
(1)當a=-1時,求f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含集合,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)是無窮數(shù)列,若存在正整數(shù)k,使得對任意,均有,則稱是間隔遞增數(shù)列,k是的間隔數(shù),下列說法正確的是( )
A.公比大于1的等比數(shù)列一定是間隔遞增數(shù)列
B.已知,則是間隔遞增數(shù)列
C.已知,則是間隔遞增數(shù)列且最小間隔數(shù)是2
D.已知,若是間隔遞增數(shù)列且最小間隔數(shù)是3,則
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com