過拋物線y2=4x的焦點F作直線交該拋物線于兩點A,B,若|AF|=3,則A點的橫坐標為
 
考點:拋物線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:確定拋物線y2=4x的準線方程,利用拋物線的定義,可求A點的橫坐標.
解答: 解:拋物線y2=4x的準線方程為x=-1.
設A點的橫坐標為x,則
∵|AF|=3,
∴根據(jù)拋物線的定義可得|AF|=3=x+1,
∴x=2,
故答案為:2.
點評:拋物線的定義告訴我們:拋物線上的點到焦點的距離等于它到準線的距離.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對應的邊分別為a,b,c,tan
A+B
2
+tan
C
2
=4,2sinBcosC=sinA.
(1)求角A的大;
(2)若S△ABC=
3
,求邊a的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的角A,B,C所對的邊分別為a,b,c,且acosB+
3
bsinA=c

(Ⅰ)求角A的大;
(Ⅱ)若a=1,
AB
AC
=3
,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)據(jù)x1,x2,…,x10的方差為2,且(x1-2)2+(x2-2)2+…+(x10-2)2=110,則數(shù)據(jù)x1,x2,…,x10的平均數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若△ABC中a=
7
b,sinC=2
3
sinB,則A=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知下列命題中:
①若
a
b
=
a
c
,則
b
=
c
;          
②x=
π
8
是函數(shù)y=sin(2x+
4
)的一條對稱軸方程;
③已知△ABC中,a=4
3
,b=4,∠B=30°,則∠A等于60°;
④存在實數(shù)x,使得sinx+cosx=
π
2
成立;
⑤已知函數(shù)f(x)=
sinπx,x<0
x
, x>0
,則方程f(x)=x在[-2,2]上的實數(shù)解的個數(shù)為3.
其中正確的命題序號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間[-π,π]內(nèi)隨機取兩個數(shù)分別記為a,b,則使得函數(shù)f(x)=4x2+4ax-b22有零點的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設二項式(x-
1
x
n的展開式中的常數(shù)項為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列
5
3
,
10
8
,
17
a+b
a-b
24
,…
中,有序?qū)崝?shù)對(a,b)可以是( 。
A、(21,-5)
B、(-21,5)
C、(-
41
2
11
2
)
D、(
41
2
,-
11
2
)

查看答案和解析>>

同步練習冊答案