圓(x-3)2+(y+1)2=1關(guān)于直線x+2y-3=0對稱的圓的方程是_____.
.
已知圓的圓心(3,-1)關(guān)于直線x+2y-3=0的對稱點的坐標是(),所以圓(x-3)2+(y+1)2=1關(guān)于直線x+2y-3=0對稱的圓的方程是.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知一曲線是與兩個定點,距離的比為的點的軌跡,求此曲線的方程,并判斷曲線的形狀. 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求圓心在直線x+y=0上,且過兩圓x2+y2-2x+10y-24=0,x2+y2+2x+2y-8=0的交點的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

自圓O外一點P引切線與圓切于點A,M為PA的中點,過M引割線交圓于B,C兩點.求證:∠MCP=∠MPB.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

x2+y2-4x+2y+c=0與直線x=0交于AB兩點,圓心為P,若△PAB是正三角形,則    C的值為
A.B.-
C.D.-

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求過點,且圓心在直線上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

經(jīng)過兩點,且在軸上截得的弦長為的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,、是通過某城市開發(fā)區(qū)中心的兩條南北和東西走向的街道,連接兩地之間的鐵路線是圓心在上的一段圓。酎c在點正北方向,且,點、的距離分別為
(Ⅰ)建立適當坐標系,求鐵路線所在圓弧的方程;
(Ⅱ)若該城市的某中學擬在點正東方向選址建分校,考慮環(huán)境問題,要求校址到點的距離大于,并且鐵路線上任意一點到校址的距離不能少于,求該校址距點O的最近距離(注:校址視為一個點).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方程表示的曲線(   )
A.都表示一條直線和一個圓B.前者是兩個點,后者是一直線和一個圓
C.都表示兩個點D.前者是一條直線和一個圓,后者是兩個點

查看答案和解析>>

同步練習冊答案