【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,PD⊥平面ABCD,E為PB上的點(diǎn),且2BE=EP.

(1)證明:AC⊥DE;
(2)若PC= BC,求二面角E﹣AC﹣P的余弦值.

【答案】
(1)解:∵PD⊥平面ABCD,AC平面ABCD

∴PD⊥AC

∵底面ABCD是正方形,

∴BD⊥AC,

∵PD、BD是平面PBD內(nèi)的相交直線,

∴AC⊥平面PBD

∵DE平面PBD,

∴AC⊥DE


(2)解:分別以DP、DA、DC所在直線為x、y、z軸,建立空間直角坐標(biāo)系,如圖所示

設(shè)BC=3,則CP=3 ,DP=3,結(jié)合2BE=EP可得

D(0,0,0),A(0,3,0),C(0,0,3),P(3,0,0),

E(1,2,2)

=(0,3,﹣3), =(3,0,﹣3), =(1,2,﹣1)

設(shè)平面ACP的一個(gè)法向量為 =(x,y,z),可得

,取x=1得 =(1,1,1)

同理求得平面ACE的一個(gè)法向量為 =(﹣1,1,1)

∵cos< >= = ,∴二面角E﹣AC﹣P的余弦值等于


【解析】(1)由線面垂直的定義,得到PD⊥AC,在正方形ABCD中,證出BD⊥AC,根據(jù)線面垂直判定定理證出AC⊥平面PBD,從而得到AC⊥DE;(2)建立空間直角坐標(biāo)系,如圖所示.得D、A、C、P、E的坐標(biāo),從而得到 、 的坐標(biāo),利用垂直向量數(shù)量積為零的方法,建立方程組解出 =(1,1,1)是平面ACP的一個(gè)法向量, =(﹣1,1,1)是平面ACE的一個(gè)法向量,利用空間向量的夾角公式即可算出二面角E﹣AC﹣P的余弦值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】手機(jī)支付也稱為移動(dòng)支付,是指允許移動(dòng)用戶使用其移動(dòng)終端(通常是手機(jī))對(duì)所消費(fèi)的商品或服務(wù)進(jìn)行賬務(wù)支付的一種服務(wù)方式.繼卡類支付、網(wǎng)絡(luò)支付后,手機(jī)支付儼然成為新寵.某金融機(jī)構(gòu)為了了解移動(dòng)支付在大眾中的熟知度,對(duì)15-65歲的人群隨機(jī)抽樣調(diào)查,調(diào)查的問題是“你會(huì)使用移動(dòng)支付嗎?”其中,回答“會(huì)”的共有100個(gè)人,把這100個(gè)人按照年齡分成5組,然后繪制成如圖所示的頻率分布表和頻率分布直方圖.

組數(shù)

第l組

第2組

第3組

第4組

第5組

分組

頻數(shù)

20

36

30

10

4

(1)求;

(2)從第l,3,4組中用分層抽樣的方法抽取6人,求第l,3,4組抽取的人數(shù):

(3)在(2)抽取的6人中再隨機(jī)抽取2人,求所抽取的2人來自同一個(gè)組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某精密儀器生產(chǎn)有兩道相互獨(dú)立的先后工序,每道工序都要經(jīng)過相互獨(dú)立的工序檢查,且當(dāng)?shù)谝坏拦ば驒z查合格后才能進(jìn)入第二道工序,兩道工序都合格,產(chǎn)品才完全合格,.經(jīng)長(zhǎng)期監(jiān)測(cè)發(fā)現(xiàn),該儀器第一道工序檢查合格的概率為 ,第二道工序檢查合格的概率為 ,已知該廠三個(gè)生產(chǎn)小組分別每月負(fù)責(zé)生產(chǎn)一臺(tái)這種儀器.
(1)求本月恰有兩臺(tái)儀器完全合格的概率;
(2)若生產(chǎn)一臺(tái)儀器合格可盈利5萬元,不合格則要虧損1萬元,記該廠每月的贏利額為ξ,求ξ的分布列和每月的盈利期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)若,求函數(shù)的極值;

(2)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)從高三男生中隨機(jī)抽取n名學(xué)生的身高,將數(shù)據(jù)整理,得到的頻率分布表如表所示:

組號(hào)

分組

頻數(shù)

頻率

第1組

5

0.05

第2組

a

0.35

第3組

30

b

第4組

20

0.20

第5組

10

0.10

合計(jì)

n

1.00

(1)求出頻率分布表中的值,并完成下列頻率分布直方圖;

(2)為了能對(duì)學(xué)生的體能做進(jìn)一步了解,該校決定在第1,4,5組中用分層抽樣取7名學(xué)生進(jìn)行不同項(xiàng)目的體能測(cè)試,若在這7名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行引體向上測(cè)試,求第4組中至少有一名學(xué)生被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面為矩形,的中點(diǎn),且,,.

(1)求證:平面

(2)若點(diǎn)為線段上一點(diǎn),且,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),那么下列結(jié)論中錯(cuò)誤的是( )

A. 的極小值點(diǎn),則在區(qū)間上單調(diào)遞減

B. ,使

C. 函數(shù)的圖像可以是中心對(duì)稱圖形

D. 的極值點(diǎn),則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(﹣1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.(12分)
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為﹣1,證明:l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】3本相同的小說,2本相同的詩(shī)集全部分給4名同學(xué),每名同學(xué)至少1本,則不同的分法有( )

A. 24B. 28C. 32D. 36

查看答案和解析>>

同步練習(xí)冊(cè)答案