【題目】已知數(shù)列{an}的前n項和Sn滿足:Sn1,且an>0,nN*.

1)求a1a2,a3,并猜想{an}的通項公式;

2)證明(1)中的猜想.

【答案】(1)a11a2;a3;猜想annN*)(2)證明見解析

【解析】

1)分別令n12,通過解一元二次方程結合已知的遞推公式可以求出a1a2,同理求出a3,根據(jù)它們的值的特征猜想{an}的通項公式;

2)利用數(shù)學歸納法,通過解一元二次方程可以證明即可.

1)當n1時,由已知得a11,

n2時,由已知得a1a21,

a11代入并整理得2a220.

a2a2>0.

同理可得a3.

猜想annN*.

2)【證明】①由(1)知,當n12,3時,通項公式成立.

②假設當nkk≥3,kN*)時,通項公式成立,

ak.

由于ak1Sk1Sk,

ak代入上式,整理得

2ak120,

ak+1,

nk1時通項公式成立.

根據(jù)①②可知,對所有nN*,an成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中中,曲線的參數(shù)方程為為參數(shù), ). 以坐標原點為極點, 軸正半軸為極軸建立極坐標系,已知直線的極坐標方程為.

(1)設是曲線上的一個動點,當時,求點到直線的距離的最大值;

(2)若曲線上所有的點均在直線的右下方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角所對的邊分別為,且

(1)求的值;

(2)若,求的面積的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點是, ,且橢圓經過點.

(1)求橢圓的標準方程;

(2)若過左焦點且傾斜角為45°的直線與橢圓交于兩點,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設橢圓a1.

)求直線y=kx+1被橢圓截得的線段長(用a、k表示);

)若任意以點A0,1)為圓心的圓與橢圓至多有3個公共點,求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= x3x2axa,x∈R,其中a>0.

(1)求函數(shù)f(x)的單調區(qū)間;

(2)若函數(shù)f(x)在區(qū)間(-2,0)內恰有兩個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2015年7月9日21時15分,臺風“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬人受災,5.6萬人緊急轉移安置,288間房屋倒塌,46.5千公頃農田受災,直接經濟損失12.99億元.距離陸豐市222千米的梅州也受到了臺風的影響,適逢暑假,小明調查了梅州某小區(qū)的50戶居民由于臺風造成的經濟損失,將收集的數(shù)據(jù)分成,,,,五組,并作出如圖頻率分布直方圖:

(1)試根據(jù)頻率分布直方圖估計小區(qū)平均每戶居民的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

(2)小明向班級同學發(fā)出倡議,為該小區(qū)居民捐款,現(xiàn)從損失超過4000元的居民中隨機抽取2戶進行捐款援助,設抽出損失超過8000元的居民為戶,求的分布列和數(shù)學期望;

(3)臺風后區(qū)委會號召小區(qū)居民為臺風重災區(qū)捐款,小明調查的50戶居民捐款情況如圖,根據(jù)圖表格中所給數(shù)據(jù),分別求,,,,的值,并說明是否有以上的把握認為捐款數(shù)額多于或少于500元和自身經濟損失是否到4000元有關?

經濟損失不超過4000元

經濟損失超過4000元

合計

捐款超過500元

捐款不超過500元

合計

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

附:臨界值表參考公式:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖ABC內接于圓柱的底面圓O,AB是圓O的直徑,AB2,BC1,DC、EB是兩條母線tanEAB.

(1)求三棱錐CABE的體積;

(2)證明:平面ACD⊥平面ADE;

(3)CD上是否存在一點M使得MO∥平面ADE,證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(Ⅰ)求過點A26)且在兩坐標軸上的截距相等的直線m的方程;

(Ⅱ)求過點A2,6)且被圓C:(x32+y424截得的弦長為的直線l的方程.

查看答案和解析>>

同步練習冊答案