【題目】我校的課外綜合實踐研究小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,他們分別到
市氣象觀測站與市醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到
如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 (°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù) (個) | 22 | 25 | 29 | 26 | 16 | 12 |
該綜合實踐研究小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關于的線性回歸方程.
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考數(shù)據(jù):
.
參考公式:回歸直線,其中.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2x+2﹣x .
(1)求方程f(x)= 的根;
(2)求證:f(x)在[0,+∞)上是增函數(shù);
(3)若對于任意x∈[0,+∞),不等式f(2x)≥f(x)﹣m恒成立,求實數(shù)m的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某漁業(yè)公司年初用81萬元購買一艘捕魚船,第一年各種費用為1萬元,以后每年都增加2萬元,每年捕魚收益30萬元.
問第幾年開始獲利?
若干年后,有兩種處理方案:方案一:年平均獲利最大時,以46萬元出售該漁船;
方案二:總純收入獲利最大時,以10萬元出售該漁船問:哪一種方案合算?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)的導函數(shù)f′(x)< ,則不等式f(x2)< + 的解集為( )
A.(﹣ , )
B.(﹣∞,﹣1)∪(1,+∞)??
C.(﹣1,1)
D.(﹣∞,﹣ )∪( ,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在凸四邊形ABCD中,AB=1,BC= ,AC⊥DC,CD= AC.設∠ABC=θ.
(1)若θ=30°,求AD的長;
(2)當θ變化時,求BD的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,,,平面ABC.
若,求直線與平面所成的角的大小;
在的條件下,求二面角的大。
若,平面,G為垂足,令其中p、q、,求p、q、r的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠有兩臺不同機器A和B生產(chǎn)同一種產(chǎn)品各10萬件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機抽取20件,進行品質(zhì)鑒定,鑒定成績的莖葉圖如圖所示:
該產(chǎn)品的質(zhì)量評價標準規(guī)定:鑒定成績達到的產(chǎn)品,質(zhì)量等級為優(yōu)秀;鑒定成績達到的產(chǎn)品,質(zhì)量等級為良好;鑒定成績達到的產(chǎn)品,質(zhì)量等級為合格將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.
Ⅰ從等級為優(yōu)秀的樣本中隨機抽取兩件,記X為來自B機器生產(chǎn)的產(chǎn)品數(shù)量,寫出X的分布列,并求X的數(shù)學期望;
Ⅱ完成下列列聯(lián)表,以產(chǎn)品等級是否達到良好以上含良好為判斷依據(jù),判斷能不能在誤差不超過的情況下,認為B機器生產(chǎn)的產(chǎn)品比A機器生產(chǎn)的產(chǎn)品好;
A生產(chǎn)的產(chǎn)品 | B生產(chǎn)的產(chǎn)品 | 合計 | |
良好以上含良好 | |||
合格 | |||
合計 |
已知優(yōu)秀等級產(chǎn)品的利潤為12元件,良好等級產(chǎn)品的利潤為10元件,合格等級產(chǎn)品的利潤為5元件,A機器每生產(chǎn)10萬件的成本為20萬元,B機器每生產(chǎn)10萬件的成本為30萬元;該工廠決定:按樣本數(shù)據(jù)測算,兩種機器分別生產(chǎn)10萬件產(chǎn)品,若收益之差達到5萬元以上,則淘汰收益低的機器,若收益之差不超過5萬元,則仍然保留原來的兩臺機器你認為該工廠會仍然保留原來的兩臺機器嗎?
附:獨立性檢驗計算公式:.
臨界值表:
k |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com