【題目】已知0m2,動(dòng)點(diǎn)M到兩定點(diǎn)F1(﹣m,0),F2m,0)的距離之和為4,設(shè)點(diǎn)M的軌跡為曲線C,若曲線C過點(diǎn).

1)求m的值以及曲線C的方程;

2)過定點(diǎn)且斜率不為零的直線l與曲線C交于A,B兩點(diǎn).證明:以AB為直徑的圓過曲線C的右頂點(diǎn).

【答案】1, ;(2)證明見解析.

【解析】

(1)根據(jù)橢圓的定義可知曲線C是以兩定點(diǎn)F1,F2為焦點(diǎn),長(zhǎng)半軸長(zhǎng)為2的橢圓,再代入點(diǎn)求得橢圓中的基本量即可.

(2)設(shè)直線,再聯(lián)立橢圓的方程,得出韋達(dá)定理,代入進(jìn)行計(jì)算可得證明即可.

1)解:設(shè)Mx,y),因?yàn)閨MF1|+|MF2|=42m,所以曲線C是以兩定點(diǎn)F1,F2為焦點(diǎn),長(zhǎng)半軸長(zhǎng)為2的橢圓,所以a=2.

設(shè)橢圓C的方程為1b0),代入點(diǎn)b2=1,

c2=a2b2,得c2=3,

所以,故曲線C的方程為;

2)證明:設(shè)直線lx=ty,Ax1,y1),Bx2,y2),

橢圓的右頂點(diǎn)為P2,0),聯(lián)立方程組

消去x0.

△>0,y1+y2,y1y2,

所以 ,∴,

故點(diǎn)P在以AB為直徑的圓上,即以AB為直徑的圓過曲線C的右頂點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:的左右焦點(diǎn)分別為,,左頂點(diǎn)為,點(diǎn)在橢圓上,且的面積為.

(1)求橢圓的方程;

(2)過原點(diǎn)且與軸不重合的直線交橢圓,兩點(diǎn),直線分別與軸交于點(diǎn),,.求證:以為直徑的圓恒過交點(diǎn),,并求出面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,討論函數(shù)的單調(diào)性;

(Ⅱ)若方程沒有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABBC,∠ACB60°,DAC中點(diǎn),ABD沿BD翻折過程中,直線AB與直線BC所成的最大角、最小角分別記為α1,β1,直線AD與直線BC所成最大角、最小角分別記為α2,β2,則有(

A.α1α2,β1β2B.α1α2,β1β2

C.α1α2,β1β2D.α1α2β1β2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司對(duì)旗下的甲、乙兩個(gè)門店在19月份的營(yíng)業(yè)額(單位:萬元)進(jìn)行統(tǒng)計(jì)并得到如圖折線圖.

下面關(guān)于兩個(gè)門店?duì)I業(yè)額的分析中,錯(cuò)誤的是( )

A.甲門店的營(yíng)業(yè)額折線圖具有較好的對(duì)稱性,故而營(yíng)業(yè)額的平均值約為32萬元

B.根據(jù)甲門店的營(yíng)業(yè)額折線圖可知,該門店?duì)I業(yè)額的平均值在[2025]內(nèi)

C.根據(jù)乙門店的營(yíng)業(yè)額折線圖可知,其營(yíng)業(yè)額總體是上升趨勢(shì)

D.乙門店在這9個(gè)月份中的營(yíng)業(yè)額的極差為25萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)F是橢圓的左焦點(diǎn),過點(diǎn)F且斜率為正的直線與E相交于A、B兩點(diǎn),過點(diǎn)A、B分別作直線AMBN滿足AMl,BNl,且直線AM、BN分別與x軸相交于MN.試求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況,下列敘述中錯(cuò)誤的是(

A.消耗1升汽油乙車最多可行駛5千米.

B.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多.

C.甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油.

D.某城市機(jī)動(dòng)車最高限速80千米/小時(shí),相同條件下,在該市用丙車比用乙車更省油.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱臺(tái)的下底面是邊長(zhǎng)為2的正三角形,上地面是邊長(zhǎng)為1的正三角形.在下底面的射影為的重心,且.

1)證明:平面

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C:的離心率為,其右焦點(diǎn)到橢圓C外一點(diǎn)的距離為,不過原點(diǎn)O的直線l與橢圓C相交于A,B兩點(diǎn),且線段AB的長(zhǎng)度為2.

1求橢圓C的方程;

2面積S的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案