【題目】已知函數(shù)f(x)= ,若存在x1 , x2∈R且x1≠x2 , 使得f(x1)=f(x2)成立,則實數(shù)a的取值范圍是 .
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線的極坐標方程是以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是(為參數(shù)).
(Ⅰ)將曲線的極坐標方程化為直角坐標方程;
(Ⅱ)若直線與曲線相交于, 兩點,且,求直線的傾斜角的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:方程 =1所表示的圖形是焦點在y軸上的雙曲線,命題q:復數(shù)z=(m﹣3)+(m﹣1)i對應的點在第二象限,又p或q為真,p且q為假,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】春節(jié)期間,“厲行節(jié)約,反對浪費”之風悄然吹開,某市通過隨機詢問100名性別不同的居民是否能做到“光盤”行動,得到如下的列聯(lián)表:
做不到“光盤” | 能做到“光盤” | |
男 | 45 | 10 |
女 | 30 | 15 |
P(K2≥k) | 0.10 | 0.05 | 0.025 |
k | 2.706 | 3.841 | 5.024 |
附:
參照附表,得到的正確結論是( )
A.在犯錯誤的概率不超過l%的前提下,認為“該市居民能否做到‘光盤’與性別有關”
B.在犯錯誤的概率不超過l%的前提下,認為“該市居民能否做到‘光盤’與性別無關”
C.有90%以上的把握認為“該市居民能否做到‘光盤’與性別有關”
D.有90%以上的把握認為“該市居民能否做到‘光盤’與性別無關”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=log4(2x+3﹣x2).
(1)求f(x)的定義域及單調區(qū)間;
(2)求f(x)的最大值,并求出取得最大值時x的值;
(3)設函數(shù)g(x)=log4[(a+2)x+4],若不等式f(x)≤g(x)在x∈(0,3)上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,焦點在x軸上的橢圓C: 經過點(b,2e),其中e為橢圓C的離心率.過點T(1,0)作斜率為k(k>0)的直線l交橢圓C于A,B兩點(A在x軸下方).
(1)求橢圓C的標準方程;
(2)過點O且平行于l的直線交橢圓C于點M,N,求 的值;
(3)記直線l與y軸的交點為P.若,求直線l的斜率k.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設a為實常數(shù),y=f(x)是定義在R上的奇函數(shù),當x<0時 ,若f(x)≥a+1對一切 x≥0成立,則a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=(a2﹣3a+3)ax是指數(shù)函數(shù),試確定函數(shù)y=loga(x+1)在區(qū)間(0,3)上的值域.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com