【題目】已知直線,的動(dòng)點(diǎn),過點(diǎn)的垂線,線段的中垂線交于點(diǎn),的軌跡為.

(1)求軌跡的方程;

(2)過且與坐標(biāo)軸不垂直的直線交曲線兩點(diǎn),若以線段為直徑的圓與直線相切,求直線的方程.

【答案】(1);(2)

【解析】

分析:(1)由拋物線的定義知P點(diǎn)軌跡是拋物線,方程為標(biāo)準(zhǔn)方程,求出焦參數(shù)可得;

(2)設(shè)直線的方程為,聯(lián)立,并整理得 ,由韋達(dá)定理得,利用拋物線的定義求出弦長(zhǎng)AB,求出中點(diǎn)坐標(biāo),由中點(diǎn)到切線的距離等于半徑可求得

詳解:(1)依題意可得,到定點(diǎn)的距離等于到定直線的距離,所以的軌跡是以為焦點(diǎn),為準(zhǔn)線的拋物線,方程為

(2)依題意設(shè)直線的方程為,

聯(lián)立,并整理得

,

由拋物線的定義知

線段的中點(diǎn)

因?yàn)橐跃段為直徑的圓與直線相切,所以

解得,

所以直線的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E的中心在原點(diǎn),焦點(diǎn)在x軸上,橢圓的左頂點(diǎn)坐標(biāo)為,離心率為

求橢圓E的方程;

過點(diǎn)作直線lEP、Q兩點(diǎn),試問:在x軸上是否存在一個(gè)定點(diǎn)M,使為定值?若存在,求出這個(gè)定點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}中,2a2+a3+a5=20,且前10項(xiàng)和S10=100.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列 的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只口袋中裝有形狀、大小都相同的10個(gè)小球,其中有紅球2個(gè),黑球3個(gè),白球5個(gè).

從中1次隨機(jī)摸出2個(gè)球,求2個(gè)球顏色相同的概率;

從中1次隨機(jī)摸出3個(gè)球,記白球的個(gè)數(shù)為X,求隨機(jī)變量X的概率分布和數(shù)學(xué)期望;

每次從袋中隨機(jī)摸出1個(gè)球,記下顏色后放回,連續(xù)取3次,求取到紅球的次數(shù)大于取到白球的次數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sin2x﹣ cos2x.
(1)求f(x)的最小周期和最小值;
(2)將函數(shù)f(x)的圖象上每一點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的兩倍,縱坐標(biāo)不變,得到函數(shù)g(x)的圖象.當(dāng)x∈ 時(shí),求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的一條弦被點(diǎn)平分,則此弦所在的直線方程是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求適合下列條件的雙曲線的方程:

(1) 虛軸長(zhǎng)為12,離心率為;

(2) 焦點(diǎn)在x軸上,頂點(diǎn)間距離為6,漸近線方程為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=cos(2x+φ)(﹣π≤φ<π)的圖象向右平移 個(gè)單位后,與函數(shù) 的圖象重合,則φ的值為(
A.
B.-
C.
D.-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線ly=2x+2,若l與橢圓 的交點(diǎn)為A,B,點(diǎn)P為橢圓上的動(dòng)點(diǎn),則使△PAB的面積為 的點(diǎn)P的個(gè)數(shù)為(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步練習(xí)冊(cè)答案