【題目】不等式|sin x+tan x|<a的解集為N,不等式|sin x|+|tan x|<a的解集為M,則解集MN的關(guān)系是(  )

A. NM B. MN C. M=N D. MN

【答案】B

【解析】

由題意根據(jù)|sinx+tanx|≤|sinx|+|tanx|,可得 M、N 間的關(guān)系.

由于不等式|sinx+tanx|<a的解集為N,不等式|sinx|+|tanx|<a的解集為M,

|sinx+tanx|≤|sinx|+|tanx|,∴MN,

故選:B.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,分組的頻率分布直方圖如下圖示.

求直方圖中的值;

求月平均用電量的眾數(shù)和中位數(shù);

在月平均用電量為,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)關(guān)于的一元二次方程.

(1是從 個數(shù)中任取的一個數(shù),是從三個數(shù)中任取的一個數(shù),求上述方程有

實根的概率;

(2)是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐,側(cè)面是邊長為2的正三角形,且與底面垂直,底面的菱形,的中點.

(1)在棱上是否存在一點,使得,,四點共面?若存在,指出點的位置并說明;若不存在,請說明理由;

(2)求點平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位實行休年假制度三年以來,50名職工休年假的次數(shù)進行的調(diào)查統(tǒng)計結(jié)果如下表所示:

休假次數(shù)

0

1

2

3

人數(shù)

5

10

20

15

根據(jù)表中信息解答以下問題:

(1)從該單位任選兩名職工,用表示這兩人休年假次數(shù)之和,函數(shù)在區(qū)間上有且只有一個零點為事件求事件發(fā)生的概率;

(2)從該單位任選兩名職工,用表示這兩人休年假次數(shù)之差的絕對值求隨機變量的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)設(shè)是否存在極值,若存在,請求出極值;若不存在,請說明理由;

3)當時.證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩個角___

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1恒成立,求的取值范圍;

2若取,試估計的范圍.精確到0.01

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一吊燈下沿圓環(huán)直徑為米,通過拉鏈、、、是圓上三等份點懸掛在處,圓環(huán)呈水平狀態(tài)并距天花板2米,如圖所示.

1為使拉鏈總長最短,應(yīng)多長?

2為美觀與安全,在圓環(huán)上設(shè)置,……,各等分點,仍按上面方法連接.若還要求拉鏈總長度最短,對比1時C點位置,此時C點將會上移還是會下移?請說明理由.

查看答案和解析>>

同步練習冊答案