【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).

)設是函數(shù)的導函數(shù),求函數(shù)在區(qū)間上的最小值;

)若,函數(shù)在區(qū)間內有零點,求的取值范圍

【答案】)當時,;當時,;

時,.的范圍為.

【解析】

試題分析:()易得,再對分情況確定的單調區(qū)間,根據(jù)上的單調性即可得上的最小值.)設在區(qū)間內的一個零點,注意到.聯(lián)系到函數(shù)的圖象可知,導函數(shù)在區(qū)間內存在零點,在區(qū)間內存在零點,即在區(qū)間內至少有兩個零點. 由()可知,當時,內都不可能有兩個零點.所以.此時,上單調遞減,在上單調遞增,因此,且必有.得:,代入這兩個不等式即可得的取值范圍.

試題解答:(

時,,所以.

時,由.

,則;若,則.

所以當時,上單調遞增,所以.

時,上單調遞減,在上單調遞增,所以.

時,上單調遞減,所以.

)設在區(qū)間內的一個零點,則由可知,

在區(qū)間上不可能單調遞增,也不可能單調遞減.

不可能恒為正,也不可能恒為負.

在區(qū)間內存在零點.

同理在區(qū)間內存在零點.

所以在區(qū)間內至少有兩個零點.

由()知,當時,上單調遞增,故內至多有一個零點.

時,上單調遞減,故內至多有一個零點.

所以.

此時,上單調遞減,在上單調遞增,

因此,必有

.

得:,有

.

解得.

時,在區(qū)間內有最小值.

,則,

從而在區(qū)間上單調遞增,這與矛盾,所以.

,

故此時內各只有一個零點.

由此可知上單調遞增,在 上單調遞減,在上單調遞增.

所以,

內有零點.

綜上可知,的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,其中為常數(shù);

(1)若,且是奇函數(shù),求的值;

(2)若, ,函數(shù)的最小值是,求的最大值;

(3)若,在上存在個點 ,滿足,

,使得

求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若過點可作曲線的切線恰有兩條,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,點在線段上移動,有下列判斷:①平面平面;②平面平面;③三棱錐的體積不變;④平面.其中,正確的是______.(把所有正確的判斷的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某地區(qū)某種昆蟲產(chǎn)卵數(shù)和溫度有關.現(xiàn)收集了一只該品種昆蟲的產(chǎn)卵數(shù)(個)和溫度)的7組觀測數(shù)據(jù),其散點圖如所示:

根據(jù)散點圖,結合函數(shù)知識,可以發(fā)現(xiàn)產(chǎn)卵數(shù)和溫度可用方程來擬合,令,結合樣本數(shù)據(jù)可知與溫度可用線性回歸方程來擬合.根據(jù)收集到的數(shù)據(jù),計算得到如下值:

27

74

182

表中

1)求和溫度的回歸方程(回歸系數(shù)結果精確到);

2)求產(chǎn)卵數(shù)關于溫度的回歸方程;若該地區(qū)一段時間內的氣溫在之間(包括),估計該品種一只昆蟲的產(chǎn)卵數(shù)的范圍.(參考數(shù)據(jù):,,,.)

附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,側面為等邊三角形且垂直于底面,,.

1)證明:平面;

2)若四棱錐的體積為,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】A地的天氣預報顯示,A地在今后的三天中,每一天有強濃霧的概率為,現(xiàn)用隨機模擬的方法估計這三天中至少有兩天有強濃霧的概率,先利用計算器產(chǎn)生之間整數(shù)值的隨機數(shù),并用0,1,2,3,4,5,6表示沒有強濃霧,用7,8,9表示有強濃霧,再以每3個隨機數(shù)作為一組,代表三天的天氣情況,產(chǎn)生了如下20組隨機數(shù):

402  978  191  925  273  842  812  479  569  683

231  357  394  027  506  588  730  113  537  779

則這三天中至少有兩天有強濃霧的概率近似為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)學40名數(shù)學教師,按年齡從小到大編號為1,2,…40,F(xiàn)從中任意選取6人分成兩組分配到A,B兩所學校從事支教工作,其中三名編號較小的教師在一組,三名編號較大的教師在另一組,那么編號為8,12,28的數(shù)學教師同時入選并被分配到同一所學校的方法種數(shù)是

A. 220 B. 440 C. 255 D. 510

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知無窮數(shù)列的各項都是正數(shù),其前項和為,且滿足:,其中,常數(shù)

1)求證:是一個定值;

2)若數(shù)列是一個周期數(shù)列(存在正整數(shù),使得對任意,都有成立,則稱為周期數(shù)列,為它的一個周期),求該數(shù)列的最小周期;

3)若數(shù)列是各項均為有理數(shù)的等差數(shù)列,),問:數(shù)列中的所有項是否都是數(shù)列中的項?若是,請說明理由;若不是,請舉出反例.

查看答案和解析>>

同步練習冊答案