【題目】為了減輕家庭困難的高中學(xué)生的經(jīng)濟(jì)負(fù)擔(dān),讓更多的孩子接受良好的教育,國(guó)家施行高中生國(guó)家助學(xué)金政策,普通高中國(guó)家助學(xué)金平均資助標(biāo)準(zhǔn)為每生每年1500元,具體標(biāo)準(zhǔn)由各地結(jié)合實(shí)際在1000元至3000元范圍內(nèi)確定,可以分為兩或三檔.各學(xué)校積極響應(yīng)政府號(hào)召,通過(guò)各種形式宣傳國(guó)家助學(xué)金政策.為了解某高中學(xué)校對(duì)國(guó)家助學(xué)金政策的宣傳情況,擬采用隨機(jī)抽樣的方法抽取部分學(xué)生進(jìn)行采訪調(diào)查.

1)若該高中學(xué)校有2000名在校學(xué)生,編號(hào)分別為0001,00020003,2000,請(qǐng)用系統(tǒng)抽樣的方法,設(shè)計(jì)一個(gè)從這2000名學(xué)生中抽取50名學(xué)生的方案.(寫(xiě)出必要的步驟)

2)該校根據(jù)助學(xué)金政策將助學(xué)金分為3檔,1檔每年3000元,2檔每年2000元,3檔每年1000元,某班級(jí)共評(píng)定出3個(gè)1檔,2個(gè)2檔,1個(gè)3檔,若從該班獲得助學(xué)金的學(xué)生中選出2名寫(xiě)感想,求這2名同學(xué)不在同一檔的概率.

【答案】(1)見(jiàn)解析;(2)

【解析】

1)第一步編號(hào)分組,第二步抽樣;

2)先用枚舉法確定從6名學(xué)生選2名的總事件數(shù),再?gòu)闹写_定2名同學(xué)不在同一檔的事件數(shù),最后根據(jù)古典概型概率公式求結(jié)果.

1)第一步:分組.2000名學(xué)生分成50組,每組40人,編號(hào)是00010040的為第1組,編號(hào)為00410080的為第2組,…,編號(hào)為19612000為第50組;

第二步:抽樣.在第1組中用簡(jiǎn)單隨機(jī)抽樣方法(抓鬮)抽取一個(gè)編號(hào)為m的學(xué)生,則在第k組抽取編號(hào)為的學(xué)生.每組抽取一人,共計(jì)抽取50名學(xué)生.

2)記該班3個(gè)1檔的學(xué)生為,,2個(gè)2檔的學(xué)生為,,1個(gè)3檔的學(xué)生為,從該班獲得助學(xué)金的同學(xué)中選擇2名同學(xué)不在同一檔為事件A.

基本事件:,,,,,,,,,,,,,共計(jì)15個(gè).

事件A包含的基本事件共有11個(gè),則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高一年級(jí)有甲,乙,丙三位學(xué)生,他們前三次月考的物理成績(jī)?nèi)绫恚?/span>

第一次月考物理成績(jī)

第二次月考物理成績(jī)

第三次月考物理成績(jī)

學(xué)生甲

80

85

90

學(xué)生乙

81

83

85

學(xué)生丙

90

86

82

則下列結(jié)論正確的是( 。

A. 甲,乙,丙第三次月考物理成績(jī)的平均數(shù)為86

B. 在這三次月考物理成績(jī)中,甲的成績(jī)平均分最高

C. 在這三次月考物理成績(jī)中,乙的成績(jī)最穩(wěn)定

D. 在這三次月考物理成績(jī)中,丙的成績(jī)方差最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖三棱錐ABCD中,BDCDE,F分別為棱BC,CD上的點(diǎn),且BD∥平面AEFAE⊥平面BCD

1)求證:平面AEF⊥平面ACD;

2)若的中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在橢圓上任取一點(diǎn)不為長(zhǎng)軸端點(diǎn)),連結(jié)、,并延長(zhǎng)與橢圓分別交于點(diǎn)兩點(diǎn),已知的周長(zhǎng)為8,面積的最大值為.

1)求橢圓的方程;

2)設(shè)坐標(biāo)原點(diǎn)為,當(dāng)不是橢圓的頂點(diǎn)時(shí),直線和直線的斜率之積是否為定值?若是定值,請(qǐng)求出這個(gè)定值;若不是定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形為矩形,平面平面,中點(diǎn),.

1)求證:;

2)若與平面所成的角為,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

)討論的單調(diào)性;

)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,為等腰直角三角形,為等邊三角形,其中OBC中點(diǎn),且.

(1)求證:平面平面PBC;

(2)若平面EBC,其中EAP上的點(diǎn),求CE與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=丨x+a+1丨+丨x-丨,(a>0)。

(1)證明:f(x)≥5;

(2)若f(1)<6成立,求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為1+cos2θ=8sinθ

1)求曲線C的普通方程;

2)直線l的參數(shù)方程為,t為參數(shù)直線y軸交于點(diǎn)F與曲線C的交點(diǎn)為A,B,當(dāng)|FA||FB|取最小值時(shí),求直線的直角坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案