已知函數(shù),其中,為自然對數(shù)的底數(shù)。
(Ⅰ)設(shè)是函數(shù)的導函數(shù),求函數(shù)在區(qū)間上的最小值;
(Ⅱ)若,函數(shù)在區(qū)間內(nèi)有零點,證明:.
(Ⅰ)當時, ;當時, ;
當時, .(Ⅱ)的范圍為.
解析試題分析:(Ⅰ)易得,再對分情況確定的單調(diào)區(qū)間,根據(jù)在上的單調(diào)性即可得在上的最小值.(Ⅱ)設(shè)為在區(qū)間內(nèi)的一個零點,注意到.聯(lián)系到函數(shù)的圖象可知,導函數(shù)在區(qū)間內(nèi)存在零點,在區(qū)間內(nèi)存在零點,即在區(qū)間內(nèi)至少有兩個零點. 由(Ⅰ)可知,當及時,在內(nèi)都不可能有兩個零點.所以.此時,在上單調(diào)遞減,在上單調(diào)遞增,因此,且必有.由得:,代入這兩個不等式即可得的取值范圍.
試題解析:(Ⅰ)
①當時,,所以.
②當時,由得.
若,則;若,則.
所以當時,在上單調(diào)遞增,所以.
當時,在上單調(diào)遞減,在上單調(diào)遞增,所以.
當時,在上單調(diào)遞減,所以.
(Ⅱ)設(shè)為在區(qū)間內(nèi)的一個零點,則由可知,
在區(qū)間上不可能單調(diào)遞增,也不可能單調(diào)遞減.
則不可能恒為正,也不可能恒為負.
故在區(qū)間內(nèi)存在零點.
同理在區(qū)間內(nèi)存在零點.
所以
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),,為自然對數(shù)的底數(shù).
(I)求函數(shù)的極值;
(2)若方程有兩個不同的實數(shù)根,試求實數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)
(1)若時,函數(shù)有三個互不相同的零點,求的取值范圍;
(2)若函數(shù)在內(nèi)沒有極值點,求的取值范圍;
(3)若對任意的,不等式在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
函數(shù)f(x)=ax3+3x2+3x(a≠0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)在區(qū)間(1,2)是增函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù),其中是的導函數(shù).
,
(1)求的表達式;
(2)若恒成立,求實數(shù)的取值范圍;
(3)設(shè),比較與的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè),函數(shù).
(1)若x=2是函數(shù)的極值點,求的值;
(2)設(shè)函數(shù),若≤0對一切都成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(R),為其導函數(shù),且時有極小值.
(1)求的單調(diào)遞減區(qū)間;
(2)若,,當時,對于任意x,和的值至少有一個是正數(shù),求實數(shù)m的取值范圍;
(3)若不等式(為正整數(shù))對任意正實數(shù)恒成立,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com