【題目】為助力湖北新冠疫情后的經(jīng)濟復蘇,某電商平臺為某工廠的產品開設直播帶貨專場.為了對該產品進行合理定價,用不同的單價在平臺試銷,得到如下數(shù)據(jù):

單價(元/件)

8

8.2

8.4

8.6

8.8

9

銷量(萬件)

90

84

83

80

75

68

1)根據(jù)以上數(shù)據(jù),求關于的線性回歸方程;

2)若該產品成本是4/件,假設該產品全部賣出,預測把單價定為多少時,工廠獲得最大利潤?

(參考公式:回歸方程,其中

【答案】128.25

【解析】

(1)根據(jù)所給數(shù)據(jù)及參考公式求得的值,可得線性回歸方程;

(2) 設工廠獲得的利潤為L萬元,則 ,利用二次函數(shù)求最值即可.

1

.

,

.

,

回歸直線方程為.

2)設工廠獲得的利潤為萬元,

,

該產品的單價定為8.25元時,工廠獲得利潤最大,最大利潤為361.25萬元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐PABCD的底面是平行四邊形,PDAB,OAD的中點,BOCO.

(1)求證:AB⊥平面PAD;

(2)若AD2AB=4, PAPD,點M在側棱PD上,且PD3MD,二面角PBCD的大小為,求直線BP與平面MAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐中,底面是邊長為2的正三角形,,底面,點分別為,的中點.

1)求證:平面平面;

2)在線段上是否存在點,使得直線與平面所成的角的余弦值為?若存在,確定點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位,已知直線的參數(shù)方程為,曲線的極坐標方程為

求直線的普通方程與曲線的直角坐標方程;

若把曲線上給點的橫坐標伸長為原來的倍,縱坐標伸長為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某家政公司對部分員工的服務進行民意調查,調查按各項服務標準進行量化評分,嬰幼兒保姆部對4050歲和2030歲各20名女保姆的調查結果如下:

分數(shù)

年齡

4050

0

2

4

7

7

2030

3

5

5

5

2

1)若規(guī)定評分不低于80分為優(yōu)秀保姆,試分別估計這兩個年齡段保姆的優(yōu)秀率;

2)按照大于或等于80分為優(yōu)秀保姆,80分以下為非優(yōu)秀保姆統(tǒng)計.作出列聯(lián)表,并判斷能否有的把握認為對保姆工作質量的評價是否優(yōu)秀與年齡有關.

3)從所有成績在70分以上的人中按年齡利用分層抽樣抽取10名保姆,再從這10人中選取3人給大家作經(jīng)驗報告,設抽到4050歲的保姆的人數(shù)為,求出的分布列與期望值.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且四個頂點構成的四邊形的面積是.

1)求橢圓的方程;

2)已知直線經(jīng)過點,且不垂直于軸,直線與橢圓交于兩點,的中點,直線與橢圓交于兩點(是坐標原點),若四邊形的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界第一產糧大國,我國糧食產量很高,整體很安全按照14億人口計算,中國人均糧食產量約為950斤﹣比全球人均糧食產量高了約250斤.如圖是中國國家統(tǒng)計局網(wǎng)站中20102019年,我國糧食產量(千萬噸)與年末總人口(千萬人)的條形圖,根據(jù)如圖可知在20102019年中( )

A.我國糧食年產量與年末總人口均逐年遞增

B.2011年我國糧食年產量的年增長率最大

C.2015年﹣2019年我國糧食年產量相對穩(wěn)定

D.2015年我國人均糧食年產量達到了最高峰

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,正方形與梯形所在平面互相垂直,已知,.

(1)求證:平面;

(2)求平面與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中,為等腰直角三角形,,DBC的中點.

1)求證:平面;

2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案