【題目】(1)求與雙曲線(xiàn)有相同的焦點(diǎn)且過(guò)點(diǎn)的雙曲線(xiàn)標(biāo)準(zhǔn)方程;

(2)求焦點(diǎn)在直線(xiàn)上的拋物線(xiàn)的標(biāo)準(zhǔn)方程.

【答案】(1) (2)

【解析】

(1)先求出雙曲線(xiàn)的c,再代點(diǎn)P的坐標(biāo)即得a,b的方程組,解方程組即得雙曲線(xiàn)的標(biāo)準(zhǔn)方程.(2)

先根據(jù)焦點(diǎn)在直線(xiàn)x﹣2y+2=0上求得焦點(diǎn)的坐標(biāo),再分拋物線(xiàn)以x軸對(duì)稱(chēng)式和y軸對(duì)稱(chēng)式,

分別設(shè)出拋物線(xiàn)的標(biāo)準(zhǔn)方程,求得p,即可得到拋物線(xiàn)的方程.

由題得設(shè)雙曲線(xiàn)的標(biāo)準(zhǔn)方程為,

代點(diǎn)P的坐標(biāo)得解方程組.

(2) ∵焦點(diǎn)在直線(xiàn)x﹣2y+2=0上,且拋物線(xiàn)的頂點(diǎn)在原點(diǎn),對(duì)稱(chēng)軸是坐標(biāo)軸,

焦點(diǎn)的坐標(biāo)為A(0, 1),或(-2,0),

若拋物線(xiàn)以y軸對(duì)稱(chēng)式,設(shè)方程為x2=2py,=1,求得p=2,∴此拋物線(xiàn)方程為x2=4y;

若拋物線(xiàn)以x軸對(duì)稱(chēng)式,設(shè)方程為y2=-2px,=2,求得p=4,∴此拋物線(xiàn)方程為y2=-8x;

故所求的拋物線(xiàn)的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD=,PA⊥PD,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O為AD中點(diǎn).

(1)求B點(diǎn)到平面PCD的距離;

(2)線(xiàn)段PD上是否存在一點(diǎn)Q,使得二面角Q-AC-D的余弦值為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線(xiàn)l的參數(shù)方程為 ( t為參數(shù)).以原點(diǎn)為極點(diǎn),x軸正半軸為極軸 建立極坐標(biāo)系,圓C的方程為 ρ=2 sinθ.
(1)寫(xiě)出直線(xiàn)l的普通方程和圓C的直角坐標(biāo)方程;
(2)若點(diǎn)P的直角坐標(biāo)為(1,0),圓C與直線(xiàn)l交于A,B兩點(diǎn),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了讓學(xué)生更多的了解數(shù)學(xué)史知識(shí),梁才學(xué)校高二年級(jí)舉辦了一次追尋先哲的足跡,傾聽(tīng)數(shù)學(xué)的聲音的數(shù)學(xué)史知識(shí)競(jìng)賽活動(dòng),共有800名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽的成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿(mǎn)分為100分)進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果見(jiàn)下表.請(qǐng)你根據(jù)頻率分布表解答下列問(wèn)題:

序號(hào)

分組

組中值

頻數(shù)

頻率

i

(分?jǐn)?shù))

Gi

(人數(shù))

Fi

1

65

0.12

2

75

20

3

85

0.24

4

95

合計(jì)

50

1

(1)填充頻率分布表中的空格;

(2)為鼓勵(lì)更多的學(xué)生了解數(shù)學(xué)史知識(shí),成績(jī)不低于85分的同學(xué)能獲獎(jiǎng),請(qǐng)估計(jì)在

參加的800名學(xué)生中大概有多少名學(xué)生獲獎(jiǎng)?(3)在上述統(tǒng)計(jì)數(shù)據(jù)的分析中有一項(xiàng)計(jì)算見(jiàn)算法流程圖,求輸出的S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義域?yàn)镽的偶函數(shù)f(x)滿(mǎn)足對(duì)x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時(shí),f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個(gè)零點(diǎn),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)恰好是拋物線(xiàn)y= x2的焦點(diǎn),離心率等于
(1)求橢圓C的方程;
(2)過(guò)橢圓C的右焦點(diǎn)F作直線(xiàn)l交橢圓C于A、B兩點(diǎn),交y軸于M點(diǎn),若 1 ,求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)求與雙曲線(xiàn)有相同的焦點(diǎn)且過(guò)點(diǎn)的雙曲線(xiàn)標(biāo)準(zhǔn)方程;

(2)求焦點(diǎn)在直線(xiàn)上的拋物線(xiàn)的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax,其中e為自然對(duì)數(shù)的底數(shù),a為常數(shù).
(1)若對(duì)函數(shù)f(x)存在極小值,且極小值為0,求a的值;
(2)若對(duì)任意x∈[0, ],不等式f(x)≥ex(1﹣sinx)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,側(cè)棱垂直于底面, 分別是的中點(diǎn).

1)求證: 平面平面;

2)求證: 平面;

3)求三棱錐體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案