【題目】已知函數(shù)f(x)=x2﹣2ax+5(a>1).
(1)若f(x)的定義域和值域均是[1,a],求實(shí)數(shù)a的值;
(2)若f(x)在區(qū)間(﹣∞,2]上是減函數(shù),且對(duì)任意的x∈[1,a+1],總有f(x)≤0,求實(shí)數(shù)a的取值范圍.
【答案】(1)a=2(2)a≥3
【解析】試題分析:(1)由對(duì)稱軸與定義區(qū)間位置關(guān)系確定最值取法,得方程組,解得實(shí)數(shù)a的值;(2)由二次函數(shù)單調(diào)性得a≥2,再根據(jù)二次函數(shù)圖像轉(zhuǎn)化不等式恒成立條件,解對(duì)應(yīng)不等式可得實(shí)數(shù)a的取值范圍.
試題解析:解:(1)∵f(x)=(x﹣a)2+5﹣a2(a>1),
∴f(x)在[1,a]上是減函數(shù),
又定義域和值域均為[1,a],
∴,即,解得 a=2.
(2)∵f(x)在區(qū)間(﹣∞,2]上是減函數(shù),
∴a≥2,
又∵對(duì)任意的x∈[1,a+1],總有f(x)≤0,
∴,即
解得:a≥3,
綜上所述,a≥3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,ABCD-A1B1C1D1是正方體,在圖①中E,F(xiàn)分別是D1C1,B1B的中點(diǎn),畫出圖①、②中有陰影的平面與平面ABCD的交線,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a、b是方程2(lg x)2-lg x6+3=0的兩個(gè)實(shí)根,求lg(ab)·(logab+logba)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知和定點(diǎn),由外一點(diǎn)向引切線,切點(diǎn)為,且滿足.(1)求實(shí)數(shù)間滿足的等量關(guān)系;
(2)求線段長(zhǎng)的最小值;
(3)若以為圓心所作的與有公共點(diǎn),試求半徑取最小值時(shí)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=2,an+1=2Sn+2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}的各項(xiàng)均為正數(shù),且bn是 與 的等比中項(xiàng),求bn的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),( )是偶函數(shù).
(1)求的值;
(2)設(shè)函數(shù),其中.若函數(shù)與的圖象有且只有一個(gè)交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+2x﹣2﹣a(a≤0),
(1)若a=﹣1,求函數(shù)的零點(diǎn);
(2)若函數(shù)在區(qū)間(0,1]上恰有一個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com