由直線:上的點向圓C:引切線,
求切線段長的最小值。
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,直線的參數方程為(為參數).若以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,則曲線C的極坐標方程為.
(Ⅰ) 求曲線C的直角坐標方程;
(Ⅱ) 求直線被曲線所截得的弦長.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線()上一點到其準線的距離為.
(Ⅰ)求與的值;
(Ⅱ)設拋物線上動點的橫坐標為(),過點的直線交于另一點,交軸于點(直線的斜率記作).過點作的垂線交于另一點.若恰好是的切線,問是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:的兩個焦點為F1、F2,點P在橢圓C上,且|PF1|=,
|PF2|= , PF1⊥F1F2.
(1)求橢圓C的方程;(6分)
(2)若直線L過圓x2+y2+4x-2y=0的圓心M交橢圓于A、B兩點,且A、B關于點M對稱,求直線L的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓經過點,且兩焦點與短軸的一個端點構成等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)動直線交橢圓于、兩點,試問:在坐標平面上是否存在一個定點,使得以為直徑的圓恒過點.若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的長軸長為,焦點是,點到直線的距離為,過點且傾斜角為銳角的直線與橢圓交于A、B兩點,使得|=3|.
(1)求橢圓的標準方程;
(2)求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
動圓過定點,且與直線相切,其中.設圓心的軌跡的程為
(1)求;
(2)曲線上的一定點(0) ,方向向量的直線(不過P點)與曲線交與A、B兩點,設直線PA、PB斜率分別為,,計算;
(3)曲線上的兩個定點、,分別過點作傾斜角互補的兩條直線分別與曲線交于兩點,求證直線的斜率為定值;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在直角坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數方程為 (α為參數).
(1)已知在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,),判斷點P與直線l的位置關系;
(2)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com