【題目】設(shè)橢圓的兩個(gè)焦點(diǎn)分別為, ,過(guò)作橢圓長(zhǎng)軸的垂線交橢圓于點(diǎn),若為等腰直角三角形,則橢圓的離心率是( )
A. B. C. D.
【答案】C
【解析】試題分析:解:設(shè)點(diǎn)P在x軸上方,坐標(biāo)為(),∵為等腰直角三角形,∴|PF2|=|F1F2|, ,故選D.
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
點(diǎn)評(píng):本題主要考查了橢圓的簡(jiǎn)單性質(zhì).橢圓的離心率是高考中選擇填空題?嫉念}目.應(yīng)熟練掌握?qǐng)A錐曲線中a,b,c和e的關(guān)系
【題型】單選題
【結(jié)束】
8
【題目】“”是“對(duì)任意的正數(shù), ”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
【答案】A
【解析】分析:根據(jù)基本不等式,我們可以判斷出“”?“對(duì)任意的正數(shù)x,2x+≥1”與“對(duì)任意的正數(shù)x,2x+≥1”?“a=
”真假,進(jìn)而根據(jù)充要條件的定義,即可得到結(jié)論.
解答:解:當(dāng)“a=”時(shí),由基本不等式可得:
“對(duì)任意的正數(shù)x,2x+≥1”一定成立,
即“a=”?“對(duì)任意的正數(shù)x,2x+≥1”為真命題;
而“對(duì)任意的正數(shù)x,2x+≥1的”時(shí),可得“a≥”
即“對(duì)任意的正數(shù)x,2x+≥1”?“a=”為假命題;
故“a=”是“對(duì)任意的正數(shù)x,2x+≥1的”充分不必要條件
故選A
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (為實(shí)常數(shù)) .
(I)當(dāng)時(shí),求函數(shù)在上的最大值及相應(yīng)的值;
(II)當(dāng)時(shí),討論方程根的個(gè)數(shù).
(III)若,且對(duì)任意的,都有,求
實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四面體中,平面,,,.是的中點(diǎn),是的中點(diǎn),點(diǎn)在線段上,且.
(1)證明:平面;
(2)若二面角的大小為60°,求∠BDC的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】生于瑞士的數(shù)學(xué)巨星歐拉在1765年發(fā)表的《三角形的幾何學(xué)》一書中有這樣一個(gè)定理:“三角形的外心、垂心和重心都在同一直線上!边@就是著名的歐拉線定理,在中,分別是外心、垂心和重心,為邊的中點(diǎn),下列四個(gè)結(jié)論:(1);(2);(3);(4)正確的個(gè)數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量,函數(shù)的最小值為.
(1)當(dāng)時(shí),求的值;
(2)求;
(3)已知函數(shù)為定義在上的增函數(shù),且對(duì)任意的都滿足,問(wèn):是否存在這樣的實(shí)數(shù),使不等式對(duì)所有恒成立,若存在,求出的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列滿足, , .
(1)求的通項(xiàng)公式;
(2)求和: .
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)等差數(shù)列的, ,列出關(guān)于首項(xiàng)、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項(xiàng)公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項(xiàng) ,公比 的方程組,解得、的值,求出數(shù)列的通項(xiàng)公式,然后利用等比數(shù)列求和公式求解即可.
試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因?yàn)?/span>a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設(shè)等比數(shù)列的公比為q. 因?yàn)?/span>b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以.
從而.
【題型】解答題
【結(jié)束】
18
【題目】已知命題:實(shí)數(shù)滿足,其中;命題:方程表示雙曲線.
(1)若,且為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在處有極值,求的值;
(2)若對(duì)于任意的在上單調(diào)遞增,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列滿足, , .
(1)求的通項(xiàng)公式;
(2)求和: .
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)等差數(shù)列的, ,列出關(guān)于首項(xiàng)、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項(xiàng)公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項(xiàng) ,公比 的方程組,解得、的值,求出數(shù)列的通項(xiàng)公式,然后利用等比數(shù)列求和公式求解即可.
試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因?yàn)?/span>a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設(shè)等比數(shù)列的公比為q. 因?yàn)?/span>b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以.
從而.
【題型】解答題
【結(jié)束】
18
【題目】已知命題:實(shí)數(shù)滿足,其中;命題:方程表示雙曲線.
(1)若,且為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com