已知(
x
+
1
2•
4x
n的展開(kāi)式前三項(xiàng)中的x的系數(shù)成等差數(shù)列.
(1)展開(kāi)式中所有的x的有理項(xiàng)為第幾項(xiàng)?
(2)求展開(kāi)式中系數(shù)最大的項(xiàng).
(1)因?yàn)檎归_(kāi)式前三項(xiàng)中的x的系數(shù)成等差數(shù)列,
所以2•
n
2
=1+
n(n-1)
8
,
所以n=8或n=1(舍去),
n=8時(shí),展開(kāi)式的通項(xiàng)公式為T(mén)r+1=
Cr8
2-rx4-
3
4
r
,
由題意,4-
3
4
r必為整數(shù),從而可知r必為4的倍數(shù),
∴r=0,4,8,
∴展開(kāi)式中所有的x的有理項(xiàng)為第1,5,9項(xiàng);
(2)設(shè)第r+1項(xiàng)為系數(shù)最大的項(xiàng),則由
tr+1
tr
≥1
tr+2
tr+1
≤1
,可得
9-r
2r
≥1
2(r+1)
8-r
≤1
,
∴2≤r≤3,
∴r=2或r=3,
∴系數(shù)最大的項(xiàng)為7x
5
2
7x
7
4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知(1-2x)n=a0+a1x+a2x2+…+anxn,(n∈N*),且a2=60.
(1)求n的值;
(2)求-
a1
2
+
a2
22
-
a3
23
+…+(-1)n
an
2n
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在(1+x)3+(1+x)4+…+(1+x)n+2的展開(kāi)式中,含x2項(xiàng)的系數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:(2-x)6=a0+a1x+a2x2+…+a6x6
(1)求a4;
(2)求a0+a1+a2+a3+a4+a5+a6的值;
(3)求|a0|+|a1|+|a2|+|a3|+|a4|+|a5|+|a6|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二項(xiàng)式(
x
2
-
1
3x
)n(n∈N*)
的展開(kāi)式中第3項(xiàng)的系數(shù)與第1項(xiàng)的系數(shù)的比是144:1.
(Ⅰ)求展開(kāi)式中所有的有理項(xiàng);
(Ⅱ)求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)以及系數(shù)絕對(duì)值最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2x-
2
2
)9
的展開(kāi)式中第7項(xiàng)為
21
4
,則x的值為(  )
A.3B.-3C.
1
3
D.-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若(a-2x)5展開(kāi)式中x2的系數(shù)為40,且(a-2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5
(1)求(a0+a2+a4)2-(a1+a3+a5)2的值;
(2)求|a0|+|a1|+|a2|+|a3|+|a4|+|a5|的值;
(3)求a1+2a2+3a3+4a4+5a5的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知(1+ax)6的展開(kāi)式中,含x3項(xiàng)的系數(shù)等于160,則實(shí)數(shù)a=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商店儲(chǔ)存的50個(gè)燈泡中,甲廠生產(chǎn)的燈泡占60%,乙廠生產(chǎn)的燈泡占40%,甲廠生產(chǎn)的燈泡的一等品率是90%,乙廠生產(chǎn)的燈泡的一等品率是80%.
(1)若從這50個(gè)燈泡中隨機(jī)抽取出1個(gè)燈泡(每個(gè)燈泡被取出的機(jī)會(huì)均等),則它是甲廠生產(chǎn)的一等品的概率是多少?
(2)若從這50個(gè)燈泡中隨機(jī)抽取出2個(gè)燈泡(每個(gè)燈泡被取出的機(jī)會(huì)均等),這2個(gè)燈泡中是甲廠生產(chǎn)的一等品的個(gè)數(shù)記為ξ,求E(ξ)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案