拋物線的頂點在原點,焦點在x軸的正半軸上,直線x+y-1=0與拋物線相交于A、B兩點,且|AB|=
8
6
11

(1)求拋物線的方程;
(2)在x軸上是否存在一點C,使△ABC為正三角形?若存在,求出C點的坐標;若不存在,請說明理由.
分析:(1)設所求拋物線的方程為y2=2px,將直線的方程代入拋物線的方程,消去y得到關于x的一元二次方程,再結合根系數(shù)的關系利用弦長公式即可求得P值,從而解決問題.
(2)對于存在性問題,可先假設存在,即假設x軸上存在滿足條件的點C(x0,0),再利用△ABC為正三角形,求出CD的長,若出現(xiàn)矛盾,則說明假設不成立,即不存在;否則存在.
解答:解:(1)設所求拋物線的方程為y2=2px(p>0),
y2=2px
x+y-1=0
消去y,
得x2-2(1+p)x+1=0.
設A(x1,y1),B(x2,y2),
則x1+x2=2(1+p),
x1•x2=1.∵|AB|=
8
6
11
,
(1+k2)[(x1+x2)2-4x1x2]
=
8
6
11

∴121p2+242p-48=0,
∴p=
2
11
或-
24
11
(舍).
∴拋物線的方程為y2=
4
11
x.

(2)設AB的中點為D,則D(
13
11
,-
2
11
)

假設x軸上存在滿足條件的點C(x0,0),∵△ABC為正三角形,
∴CD⊥AB,∴x0=
15
11

∴C(
15
11
,0
),∴|CD|=
2
2
11

又∵|CD|=
3
2
|AB|=
12
2
11
,
故矛盾,∴x軸上不存在點C,使△ABC為正三角形.
點評:本題主要考查了橢圓的標準方程,以及直線與圓錐曲線的綜合問題,屬于基礎題.突出考查了數(shù)形結合、函數(shù)與方程、等價轉化等數(shù)學思想方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

13、拋物線的頂點在原點,對稱軸是坐標軸,且焦點在直線x-y+4=0上,則此拋物線方程為
y2=-16x或x2=16y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設拋物線的頂點在原點,準線方程為x=-2,則拋物線的方程是( 。
A、y2=-8xB、y2=8xC、y2=-4xD、y2=4x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江蘇一模)本題主要考查拋物線的標準方程、簡單的幾何性質等基礎知識,考查運算求解、推理論證的能力.
如圖,在平面直角坐標系xOy,拋物線的頂點在原點,焦點為F(1,0).過拋物線在x軸上方的不同兩點A、B,作拋物線的切線AC、BD,與x軸分別交于C、D兩點,且AC與BD交于點M,直線AD與直線BC交于點N.
(1)求拋物線的標準方程;
(2)求證:MN⊥x軸;
(3)若直線MN與x軸的交點恰為F(1,0),求證:直線AB過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線的頂點在原點,對稱軸是坐標軸,且焦點在直線x-y+2=0上,則此拋物線方程為
y2=-8x或x2=8y
y2=-8x或x2=8y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)實軸長為4
3
的橢圓的中心在原點,其焦點F1,,F(xiàn)2在x軸上.拋物線的頂點在原點O,對稱軸為y軸,兩曲線在第一象限內相交于點A,且AF1⊥AF2,△AF1F2的面積為3.
(Ⅰ)求橢圓和拋物線的標準方程;
(Ⅱ)過點A作直線l分別與拋物線和橢圓交于B,C,若
AC
=2
AB
,求直線l的斜率k.

查看答案和解析>>

同步練習冊答案